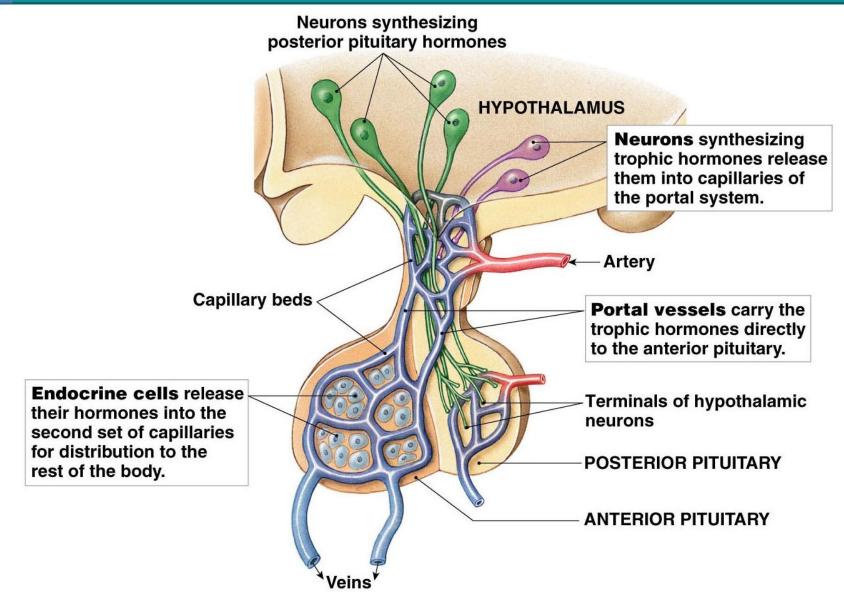

The hierarchy of the hormone system

Neuroendocrine messengers

	Neurotransmitter (Present in Nerve Endings)	Hormone Secreted by Neurons	Hormone Secreted by Endocrine Cells
Dopamine	+	+	+
Norepinephrine	+	+	+
Epinephrine	+		+
Somatostatin	+	+	+
Gonadotropin-releasing hormone (GnRH)	+	+	+
Thyrotropin-releasing hormone (TRH)	+	+	
Oxytocin	+	+	+
Vasopressin	+	+	+
Vasoactive intestinal peptide	+	+	
Cholecystokinin (CCK)	+		+
Glucagon	+		+
Enkephalins	+		+
Pro-opiomelanocortin derivatives	+		+
Other anterior pituitary hormones	+		+


Autonomic control centers in the brain

HYPOTHALAMUS

- Integrates functions that maintain chemical and temperature homeostasis.
- Controls the release of hormones from the anterior and posterior pituitary.
- Functions with the limbic system.

The Hypothalamic-Hypophyseal Portal System

Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings

HYPOTHALAMUS

Synthesizes & releases hypophysiotropic hormones:

- Thyrotropin-releasing hormone (TRH)
- Corticotropin-releasing hormone (CRH)
- Gonadotropin-releasing hormone (GnRH)
- Growth hormone-releasing hormone (GHRH)
- Growth hormone-inhibiting hormone (GHIH)
- Prolactin-releasing factor (PRF)
- Prolactin-inhibiting hormone-PIH (Dopamine)

POSTERIOR PITUITARY

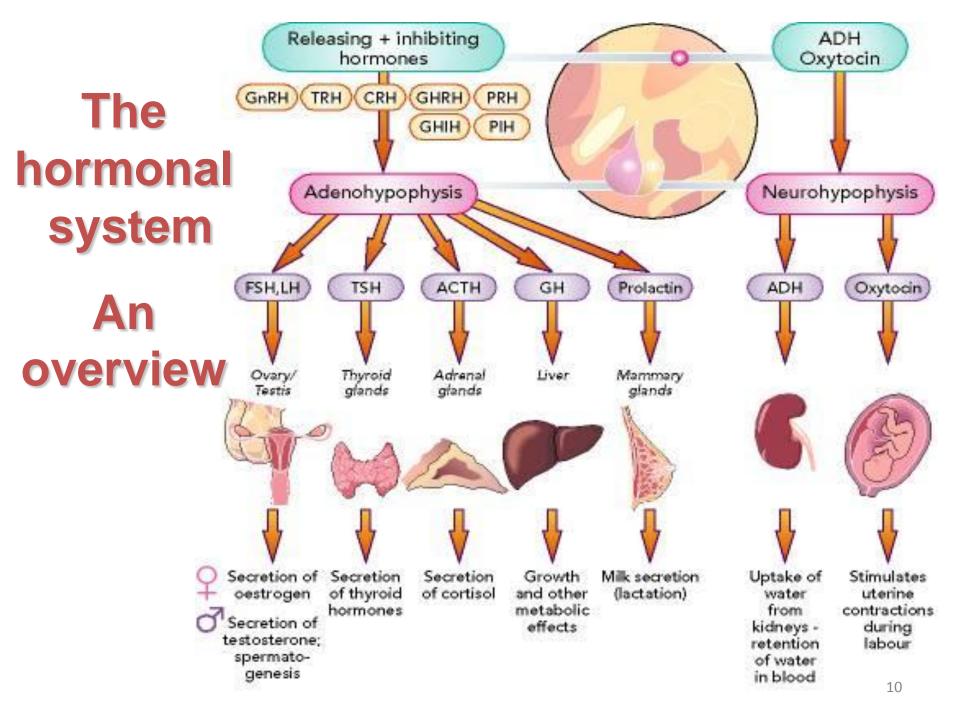
Hormones synthesized in the hypothalamus (SON and PVN) are transported down the axons to the endings in the posterior pituitary.

Hormones are stored in vesicles in the posterior pituitary until release into the circulation.

Principal Hormones: Vasopressin and Oxytocin.

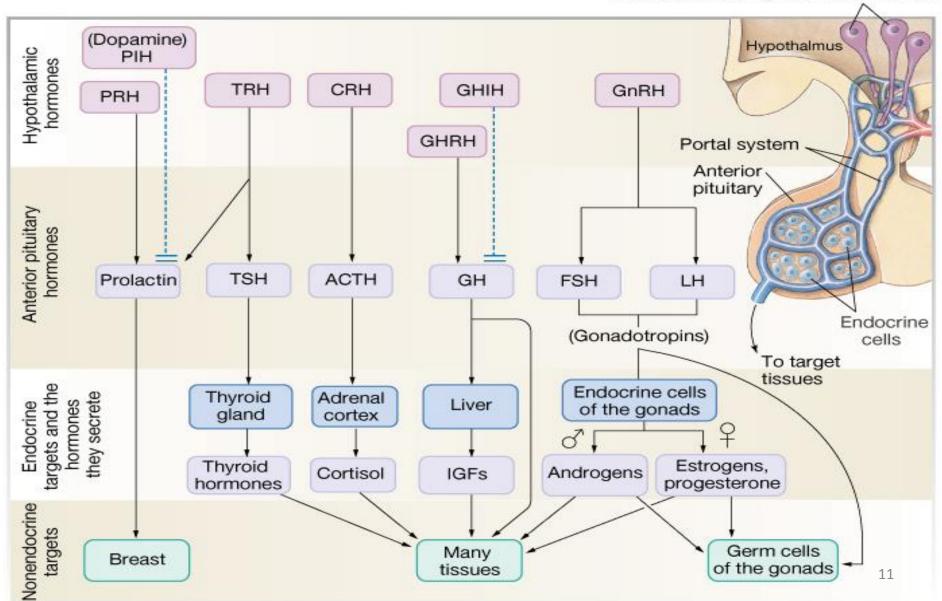
Structures of ADH and Oxytocin

Antidiuretic hormone (ADH) cys-tyr-phe-gln-asn-cys-pro-arg-gly-NH₂


Oxytocin

cys-tyr-ile-gln-asn-cys-pro-leu-gly-NH₂

ANTERIOR PITUITARY HORMONES


Synthesis of different anterior pituitary hormone is by different cell populations

- **Corticotrophs ACTH (Corticotropin)**
- Lactotrophs Prolactin
- **Somatotrophs Growth Hormone**
- Thyrotrophs TSH (Thyrotropin)
- Gonadotrophs FSH, LH (Gonadotropins)

Hypothalamic-Anterior pituitary Axis

Neurons secreting trophic hormones

Hypothalamic Hormones Hypophysiotropic Hormones

• GHRH

↑Growth of Somatotrophs \rightarrow ↑GH Precursor: 108 a.as \rightarrow GHRH 44 a.as (1-29 full activity)

Smoatostatin

- ↓GH, TSH, insulin, glucagon, gastrin, secretin, and VIP secretion.
- Source: hypothalamus, pancreatic islet D cells, Gastrointestinal mucosa, thyroid C cells.
- Precursor: 116 a.as → somatostatin 14 (hypothalamus) somatostatin 28 (gut).

Hypophysiotropic Hormones ... Continue

• Dopamine

Primary PRL inhibitory hormone (Primary Control). Hypothalamic lesions, stalk section increases PRL. GABA, cholinergic pathway ↓PRL.

• PRL Releasing Factors

TRH ↑ PRL (physiology?).

PRL increases during sleep, stress, suckling (not mediated by TRH).

VIP, serotonergic pathway increases |PRL.

• TRH

Tripeptide.

Precursor: 242 a.a5. (six copies TRH)

↑TSH secrection (thyrotropin).

Hypophysiotropic Hormones ... Continue

- Corticotropin-Releasing Hormone (CRH) 41 a.as (precursor 196 a.as) **†ACTH and POMC** Half-life: 60 min ADH, angiotensin II potentiate CRH-mediated secretion of ACTH. Secreted also from placenta ([↑] during pregnancy and delivery).
- Gonadotropin-Releasing Hormone (Gn RH)

 ↑ gonadotropin secretion (LH + FSH) in testis and ovary.
 - Linear decapeptide, precursor 92 a.as. (GnRH + 56 a.as GnRH associated peptide) 14

Mechanism of Action of Hypothalamic Stimulatory Hormones

• Half-life

Short except CRH

Secretion

Immediate secretion from secretory granules

Receptors

Plasma-membrane receptors

Feedback regulation is due in part to changing no. of receptors (\uparrow thyroid hormone $\rightarrow \downarrow$ no. TRH receptors.

Post-receptor signaling
 PI, Adenylate Cyclase, ↑ intracellular calcium
 TRH and GnRH: activate both systems, IP3, DAG,
 cAMP
 CRH and GHRH: ↑cAMP

Mechanism of Action of Hypothalamic Inhibitory Hormones

- Not well understood.
- Somatostatin and Dopamine: Inhibit adenylate cyclase via G-protein (Gi).

Inhibit secretion induced by cAMP analogues: do not act exclusively by reduction of intracellular cAMP.

Physiology of Control of Anterior Pituitary Hormones

Release of Hypothalamic Hormones

- Regulation of Secretion
 - Negative feedback by T₃/T₄ (Closed-loop system).
 - Direct or indirect feedback loop.
 - Open loop from neurotransmitters from higher centers (response to stress, exercise, temp.).
- **Positive feedback loop** Estrogen on LH in mid menstrual cycle.
- Pulsatile

Crucial to function (GnRH at puberty).

Release of Hypothalamic HormonesContinue

- Circadian rhythm Role of pineal gland:
 - Neural connection between retina and pineal gland $\rightarrow \uparrow$ melatonin
 - Melatonin rises at night: the increase declines with age (triggers the onset of puberty).
 - Effect through N-acetyltransferase.

Anterior Pituitary Hormones ACTH, GH, PRL, TSH, LH and FSH

Conticotropin related peptides: ACTH, LPH, MSH, endorphins.

➤GH, PRL (with hCG): polypeptide hormones with sequence homology.

LH, FSH, TSH: (Glycoproteins, two subunits, with structural similarities)

GH (Growth Hormone)

Biosynthesis

Pre-GH (28,000) \rightarrow GH (21,500), 2 -S-S- linkages, 191 a.as.

Function

Indirect effects (through IGF-1)

- Expansion of chondrocytes
- ↑ linear growth
- ↑ DNA synthesis in cartilage, collagen synthesis
- ↑ Body weight

Direct effects (antagonize insulin)

- ↑ lipolysis
- ↓ glucose uptake
- ↑ amino acid transport
- ↑ protein synthesis
- ↑ IGF production (liver)

Growth Hormone ... Measurement

2 ng/ml (400 mg/d for adult, 700 mg/d for young) t¹/₂ 20-50 min

Secretion

Major systems: GHRH, Somatostatin (episodic) Neural control: sleep Stress: ↑ GH Metabolic Control Cortisol excess, hypo- and hyperthyroidism blunt GH response to stimuli) Neuropharmacological agents: depaminergic, serotonergic, α -adrenergic \uparrow GH. 22

Growth Hormone ...

Evaluation

Provocative tests: GHRH – Arg test Insulin – induced hypoglycemia

Growth Hormone ...

Mechanism of Action

GH

Receptors: age 7 months
Soluble TK
Binding: dimerization, recruitment of TK, JAK-2
GH causes down-regulation of receptors

IGF-1

>IGF-1 receptors: similar to insulin (intrinsic TK)

Prolactin

Biosynthesis

Precursor (40,000-50,000) → PRL (198 a.as, MW 22,000)

Function

↑ Lactation in postpartum

During pregnancy: PRL (+ estrogen, progesterone, hPL, insulin, thyroid hormone, cortisol), additional breast development, milk.
Pregnancy: Estrogen blunts PRL on lactation

↑ PRL → hypogonadism
(↓ LH, FSH pulsatile secretion , ↓LH surge)

Prolactin ...

Measurement

400 mg/d, 15-20 ng/ml (\bigcirc 13 ng/ml, \bigcirc 5 ng/ml) Secretion

Dopamine: \downarrow PRL (dopamine agonists e.g. bromocriptine). Pregnancy and Lactation: \uparrow PRL up to 10 times. TRH and VIP: \uparrow PRL (thyroid hormones blunt TRH) Episodic: Peak 4-7 am Stress: (exercise, hypoglycemia, M1) \uparrow PRL $E_2 \uparrow$, glucocorticoids \downarrow PRL.

Mechanism of Action

Like GH, soluble TK

ACTH and Related Peptides

Biosynthesis

POMC \rightarrow ACTH (39 a.as.), α , β , and γ MSH, β -endorphin (from β -Lipotropin), N-terminal fragment.

Function

†glucocorticoids and androgens (adrenal cortex)

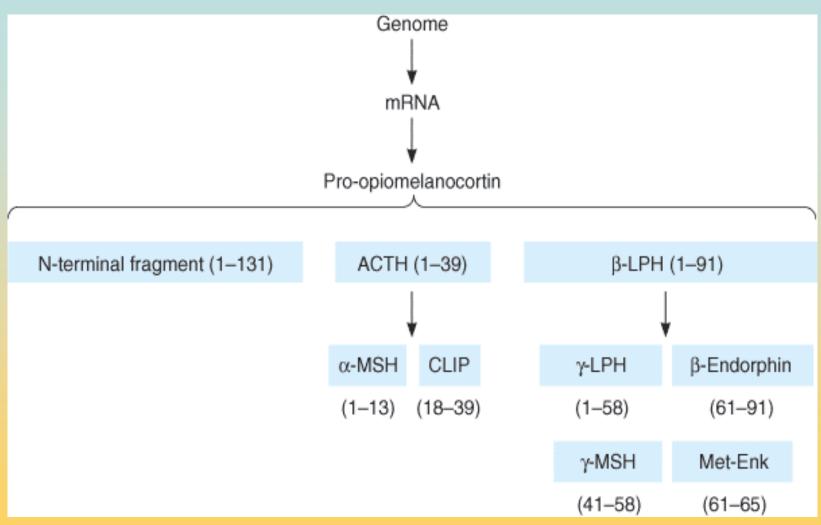
 \uparrow cholesterol \rightarrow pregnenolone

Measurement

5-52 Pg/ml, t_{1/2} (7-12 min)

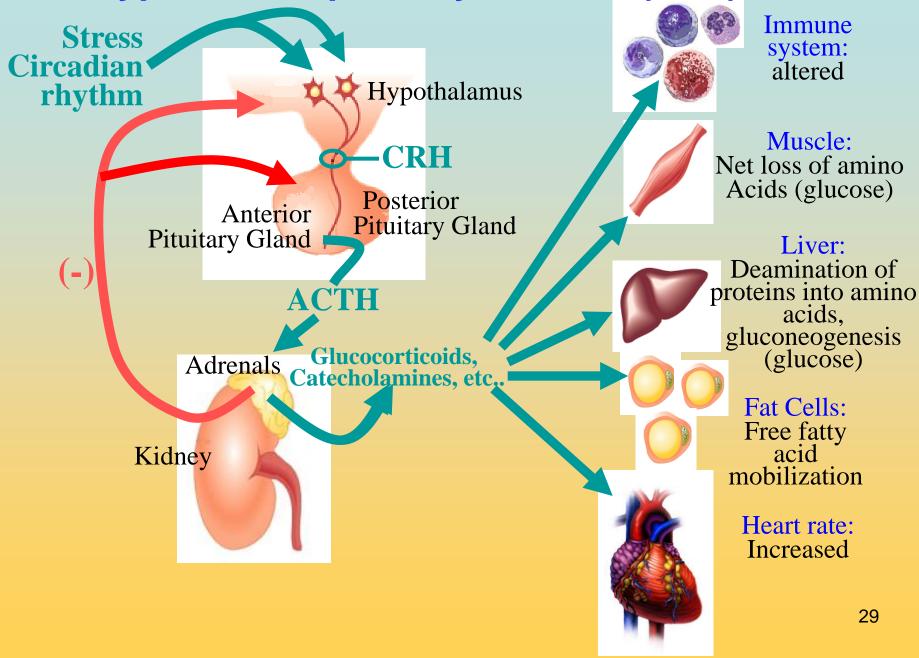
Secretion

CRH $\rightarrow \uparrow$ ACTH (pulsatile, diurnal rhythm –peak before awakening) Stress $\rightarrow \uparrow$ ACTH


Negative feedback: at the level of hypothalamus and pituitary

"Slow feedback"

"Fast feedback"


ACTH inhibits its own secretion (short loop)

ACTH synthesis

Processing and cleavage of pro-opiomelanocortin (POMC)

Hypothalamopituitary adrenal (HPA) axis

Adrenals

Zona Glomerulosa

Mineralocorticoids (Aldosterone)

Na+, K+ and water homeostasis

Zona Fasciculata

Glucocorticoids (Cortisol)

Glucose homeostasis and many others

<u>Zona Reticularis</u>
Sex steroids (androgens)

Medulla: "Catecholamines" Epinephrine, Norepinephrine, dopamine

TSH (Thyroid Stimulating Hormone)

Structure

Glycoprotein, two subunits α , β , MW 28,000

 α Subunit: (similar to LH and FSH) and to hCG.

β Subunit: different (hormone specificity)

Function

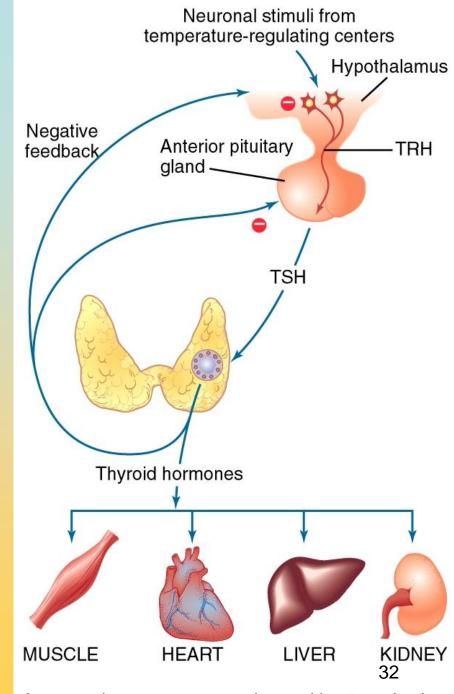
Thyroid: \uparrow iodine uptake, hormone synthesis and release.

↑ gland size (↑ mRNA and protein synthesis), ↑ cAMP

Measurement

Normal range 0.5-4.7 μ U/ml; t_{1/2} 50-60 min

Secretion


TRH stimulates TSH synthesis and release.

Somatostatin:
 TSH.

Negative Feedback Inhibition :by thyroid hormone (pituitary and hypothalamus levels), \downarrow number of TRH receptors, mRNA for TRH synthesis.

Hypothalamothyroid axis

- Tissues become sensitive to epinephrine
- Increase cellular respiration, O₂ use and metabolism
- Heat is generated
- Thermoregulation
- Growth and development

Increased oxygen consumption and heat production

Gonadotropins (LH, FSH)

Biosynthesis

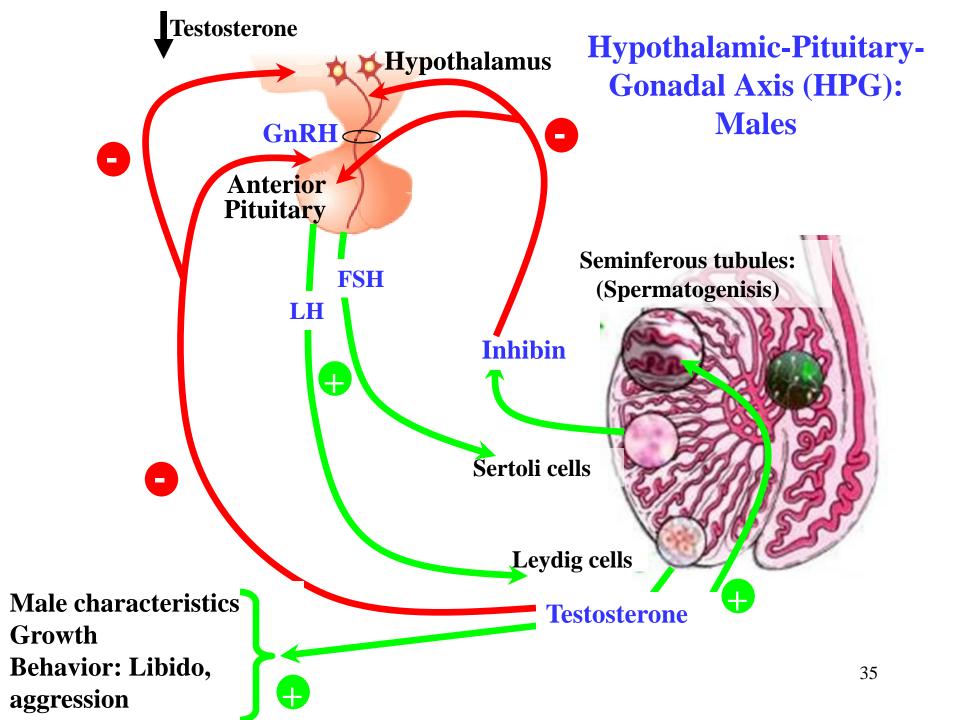
Glycoproteins, α and β subunits, MW 30 KDa
hCG: activity resembles LH
hMG (human menopausal gonadotropin): FSH-like activity.

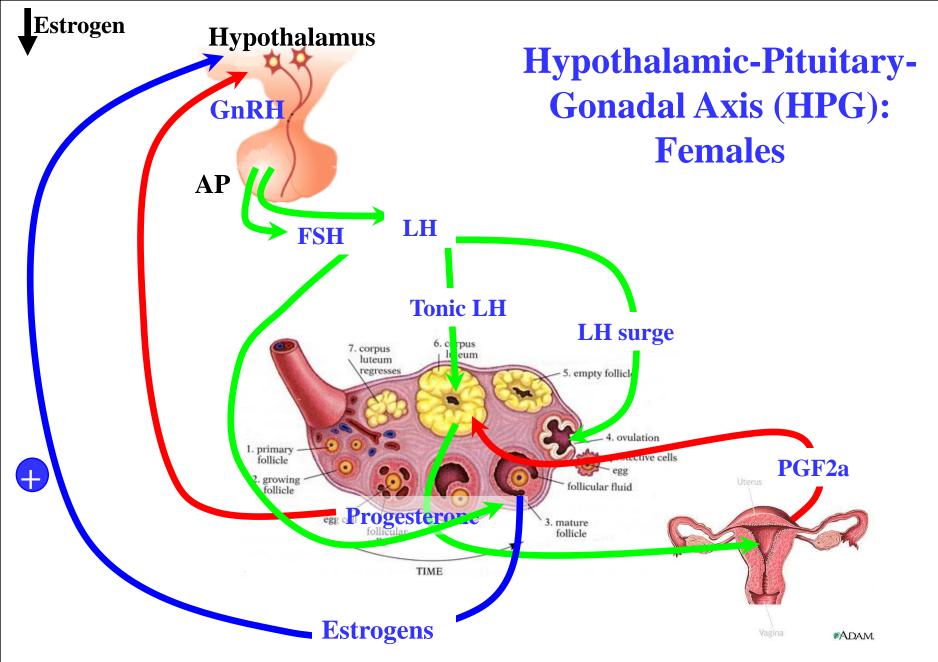
Function

- ↑ sex steroids ↑ gametogenesis
- ♂ LH ↑T (Leydig cells). In Sertoli FSH ↑ androgen binding protein Spermatogenesis requires LH + FSH
- \bigcirc LH \uparrow E₂ and progesterone (ovary)
 - LH surge \rightarrow ovulation
 - $FSH \rightarrow$ development of ovarian follicle
 - LH + FSH \uparrow E₂ production by ovarian follicle.

Measurement

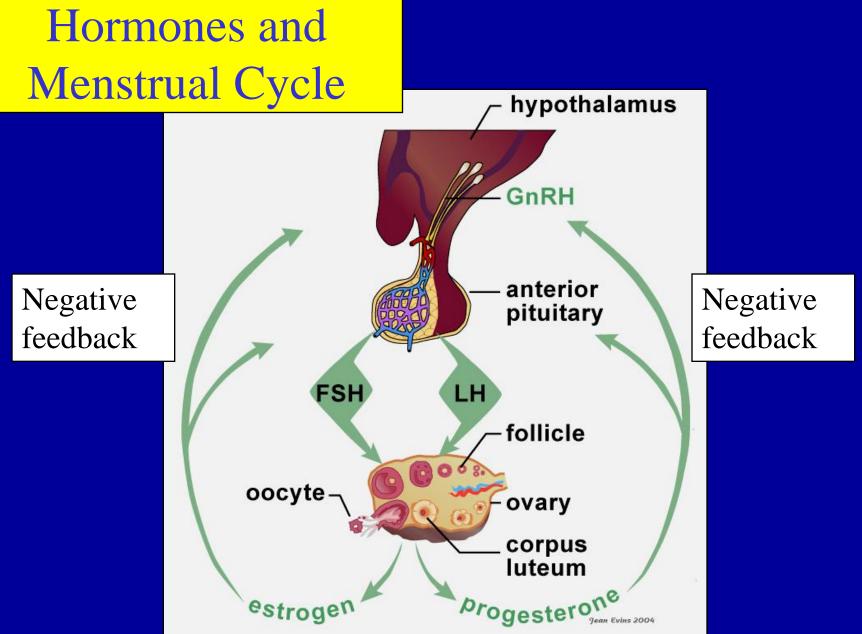
LH + FSH low before puberty, elevated in postmenopause. Puberty: nocturnal ↑ LH (boys), cyclic FSH + LH (girls) LH + FSH: vary in menstrual cycle.


Gonadotropins (LH, FSH) ...


Secretion

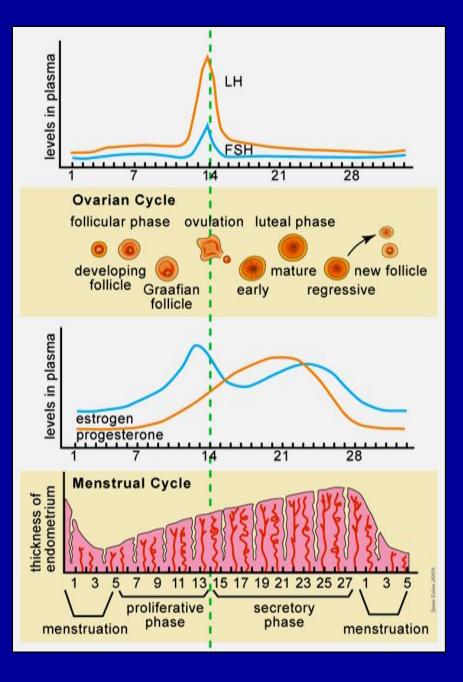
- LH + FSH under GnRH
- Puberty: LH + FSH, leptin
- Episodic secretion, pulsatile GnRH, pulsatile LH + FSH Positive feedback:
 - $E_2 \rightarrow \uparrow LH + FSH$ surge; Progesterone augments E_2 effect.

Negative feedback:


- In Women: Primary gonadal failure (Menopause) \uparrow LH + FSH
- In men: Primay gonadal failure with low T
 - \uparrow LH + FSH
- ↑ inhibin $\rightarrow \downarrow$ FSH
- Castration: **†**FSH + LH

Menstrual cycle

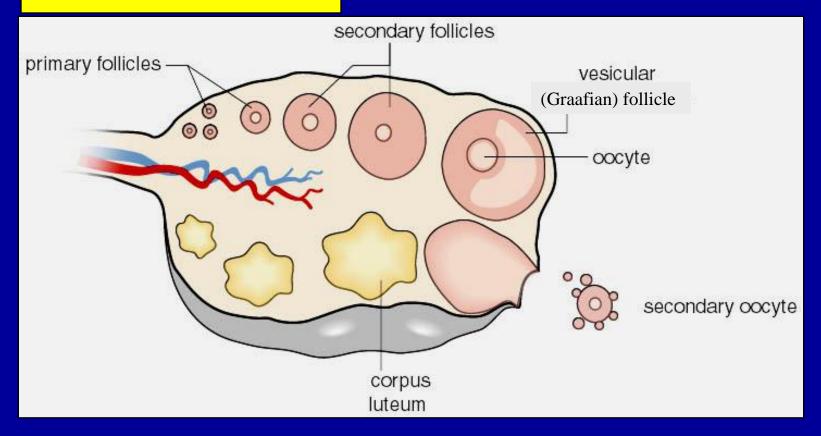

The cyclic buildup and breakdown of the endometrium as the uterus prepares monthly for a blastocyst



Based on: Mader, S., Inquiry Into Life, McGraw-Hill

Negative Feedback & Homeostasis

Negative feedback effects of estrogen and progesterone are the prime homeostatic mechanisms maintaining female sex characteristics at a relatively constant level



Hormonal Regulation of Ovarian and Uterine Cycles

Based on Mader, S., *Inquiry*, Wm. C. Brown Publishers

Ovulation

Based on: Mader, S., Inquiry Into Life, McGraw-Hill

Hormones and Menstrual Cycle Pituitary produces FSH and LH FSH and LH cause follicle to develop and release egg Follicle produces estrogen and progesterone Estrogen and progesterone thicken endometrium to prepare for implantation of fertilized egg and suppress production of FSH and LH Egg not fertilized Egg fertilized

If the Egg is Fertilized

Fertilized egg implants in endometrium

Embryo sends out hormonal message to the old follicle (corpus luteum) to let it know an embryo is present

Old follicle continues to produce estrogen and progesterone to maintain endometrium

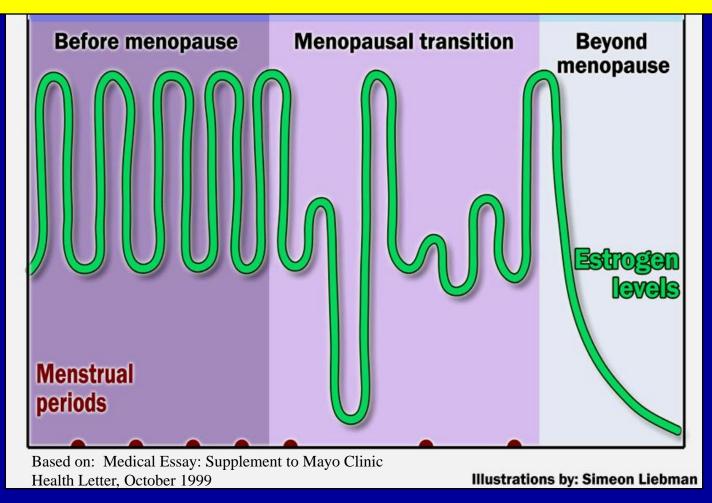
If the Egg is Not Fertilized

Unfertilized egg does not implant

No hormonal message is sent to the old follicle and it stops production of estrogen and progesterone

Without estrogen and progesterone, the endometrium breaks down and the menstrual flow occurs

<u>Menopause</u>


- In a woman's 40s, estrogen production declines
- Symptoms of early menopause (perimenopause) appear and may last for 5 years
- Eventually estrogen production stops, menstrual cycle stops and woman enters menopause

Average age to enter menopause is 51

Symptoms of Early Menopause

- Hot flashes
- Dry skin
- Brittle hair
- Insomnia
- Vaginal dryness
- Mood swings

Changing hormone levels with menopause

The uneven rising and falling of hormone levels during perimenopause may be responsible for menstrual irregularities and other problems associated with menopause. 47

Pituitary and Hypothalamic Disorders

Etiology Pituitary adenomas

Manifestations

- a. Pituitary hypersecretion
- b. Pituitary insufficiency
- c. Visual field defects
- d. Diabetes isipidus

Hypopituitarism

Primary: Secondary:

Etiology:

destruction of anterior pituitary. deficiency of hypothalamic stimulatory factors "nine I's"

Invasive:
 Infarction:

3. Infiltrative:

large pituitary adenomas Ischemic damage to pituitary, necrosis in diabetes mellitus. Sarcoidosis (hypothalamus and pituitary), Hemochromatosis: Iron storage disease

Hypopituitarism

- **4. Injury:** Severe head trauma
- 5. Immunologic: Lymphocytic hypophysitis: in pregnancy + postpartum.
- **6. Iatrogenic:** Surgical + radiation
- 7. Infectious: tuberculosis, syphilis, mycotic infections.
- 9. Isolated:

8. Idiopathic: autosomal, X-linked inheritance deficiency in GH, ACTH, Gonadotropin, TSH, PRL, Multiple hormone (Pit-1, Prop-1).

Clinical Features of Hypopituitarism

Pituitary insufficiency: gradual, initial: GH, gonadotropin followed by TSH then ACTH, finally PRL.
Symptoms

↓ GH: decreased growth in children, ↓ muscle mass ↑ body fat

Hypogonadism: amenorrhea, impotence and infertility, in children: no advance to puberty.

↓ **TSH:** hypothyroidism, cold intolerance, anemia, mental dullness.

↓ ACTH: adrenocortical insufficiency, hypotension, shock, cardiovascular collapse.

Disorders of Oversecretion

Due to Adenomas Arise in Pituitary: Lack of suppression of hypothalamic hormones. **Incidence:** Prolactinomas 60% ↑ GH 20% ↑ ACTH 10% ↑gonadotropins (unusual)

Pituitary Adenomas 1. Prolactinomas

Clinical Features

Galactorrhea

Gonadal dysfunction

- ♀ Amenorrhea, oligomenorrhea with anovulation infertility.
 - ↑ PRL inhibits (pulsatile LH and FSH, LH surge, positive feedback of E2 on gonadotropins).
- ♂ Galactorrhea, hypogonadism, ↓ libido, ↓ T impotence, infertility (↓ sperm count).

Pituitary Adenomas 1. prolactinomas ...

Diagnosis

Basal PRL > 200ng/ml \rightarrow prolactinomas 20-100 ng/ml \rightarrow MRI required

➢Treatment

Surgical Dopamine Agonists (bromocriptine) Radiotherapy. Pituitary Adenomas 2. Acromegaly and Gigantism

Etiology

Primary pituitary adenoma Gs mutation ↑ cAMP (in 40% GH – adenomas) Ectopic GHRH Ectopic GH (few lung tumors)

> Pathophysiology

Acromegaly in adults Gigantism in childhood and adolescence Deleterious effects: due to excessive IGF-I.

Pituitary Adenomas 2. Acromegaly and Gigantism

Clinical Features

Hyperinsulinemia

Acromegaly: Enlargement of hands, feet and facial features , Hypertrophy of the heart, hypertension

Diagnosis

High basal GH levels 10-500ng/ml (normal 1-5ng/ml) Oral glucose suppression test: negative IGF-I measurement Tumor localization.

➢ Treatment

Surgical treatment, Radiotherapy. Medical treatment: somatostatin analogs (octreotide)

Pituitary Adenomas 3. Cushing's Disease

Pathology

ACTH – secreting pituitary tumors
 Adrenal: hyperplasia of zona reticularis /fasciculata normal zona glomerulosa.

Pathogenesis

- 1. ↑ ACTH, bilateral adrenocortical hyperplasia, hypercortisolism.
- 2. ACT H and cortisol circadian: absent
- 3. ACTH and cortisol response to stress: absent.
- 4. Negative feedback of ACTH by glucocorticoids: abnormal
- 5. GH, TSH, LH, FSH: subnormal response to stimulation.

Pituitary Adenomas 3. Cushing's Disease ...

Clinical Features

Symptoms of hypercortisolism and adrenal androgen excess. Obesity, hypertension, glucose intolerance, moon faces. gonadal dysfunction (amenorrhea or impotence). Cushing's disease 8:1 female /male Ectopic ACTH 3:1 male/female

Diagnosis

↑ cortisol levels

Abnormal negative feedback by dexamethasone ACTH levels

Treatment

Surgical, Radiotherapy, chemical

Posterior Pituitary: Neurohypophysis

Oxytocin

Contraction of smooth muscle uterus: during labor mammary gland: milk ejection

Vasopressin (ADH)

- Kidney (V2 receptors): Water reabsorption (aquaporin-2 channels)
- > Vasoconstriction (V1 receptors): \uparrow BP
- Potentiate CRH on ACTH: (V3 receptors)

Posterior Pituitary: Neurohypophysis

Half-life:

5 min

Mechanism of Action: G Protein Oxytocin and ADH (V1 receptors): PI, Ca⁺⁺ ADH (V2 receptors): cAMP

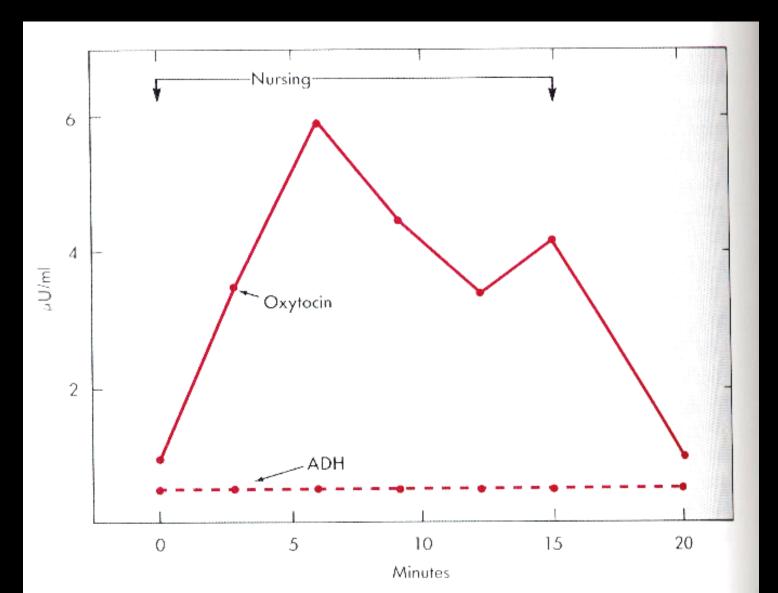
Control of ADH Secretion

➤↑ Osmolality:

 $\uparrow \text{ADH (H}_2\text{O retention)} \rightarrow \downarrow \text{Osmolality}$ (Osmoreceptors of hypothalamus) $\rightarrow \downarrow \text{ADH}$

➢↓ Blood Volume: ↑ ADH

Hemorrhage:
 ADH (baroreceptors)


>CNS (Stress, vomiting, ...): \uparrow ADH

Control of Oxytocin Secretion

- Elevated during **Parturition** and Lactation
- During Parturition: Vaginal stimulation,

 progesterone (Progesterone blocks uterus response to oxytocin), Positive feedback.
- \blacktriangleright Suckling (sight sound of infant) \rightarrow
 - \uparrow oxytocin \rightarrow milk ejection.
- $\succ \text{ Stress} \rightarrow \downarrow \text{ oxytocin} \rightarrow \downarrow \text{ flow of milk}$

Oxytocin secretion is stimulated by nursing

Disorders of Posterior Pituitary

Diabetes insipidus

Deficient ADH action very dilute urine (20 liters)

Types

- 1. Central Diabetes Insipidus: pituitary and hypothalamic disorders (no ADH secretion)
- 2. Nephrogenic Diabetes Insipidus: no renal response to ADH (Chronic renal disease, defects of aquaporin-2 gene, drugs: lithium carbonate)

Syndrome of Inappropriate Secretion of ADH (SIADH)

Ectopic ADH (Pancreatic or Duodenal tumors)

Tuberculosis and Pneumonia ↑ ADH
 Hyponatremia, plasma Osmolality < 280 mosm/kg.

Urine inappropriately concentrated.