GENE REGULATION IN EUKARYOTES

Course: Molecular Biology (02022312) Instructor: Dr. M. A. Srour

Reference:

Watson et al. Molecular biology of the gene, 6th ed. 2008, Chap 17 pp. 589-632; Chap 12 pp. 396-414

Lec # 11

Wed 28.03.2012

ABLE 12-1	The Subunits of	RNA Polymerases		
Prokaryotic		Eukaryotic		
Bacterial	Archaeal	RNAP I	RNAP II	RNAP III
Core	Core	(Pol I)	(Pol II)	(Pol III)
β′	A'/A''	RPA1	RPB1	RPC1
β	В	RPA2	RPB2	RPC2
α_{i}	D	RPC5	RPB3	RPC5
$\alpha_{\rm II}$	L	RPC9	RPB11	RPC9
ω	К	RPB6	RPB6	RPB6
	[+6 others]	[+9 others]	[+7 others]	[+11 others]

RNA Polymerase II core promoters						
TFIIB TBP	TFIID TFIID	TFIID	TFIID			
-37 -32 -31 -26	-2 +4 +6 +11	+16 +21	+28 +30 +32 +34			
		CERCER				
CCACGCCC TATATAT	TT ^{AN} ATT	0101	GGTCGTG AGC			
Consensus	sequence					
			Fig 12-14/ p. 397			

□ Elongation:

- Kinase P-TEFb is recruited to Pol II, phosphorylates CTD and activates hSPT5, also recruits TAT-SF1
- ELL family bind elongating Pol II and suppress transient pausing by enzyme
- TFIIS: limits the length of time that Pol II pauses when it encounters seq that slow the enzyme's progress
- TFIIS contributes to proofreading by RNA Pol II. TFIIS stimulates an inherent RNase activity in Pol allowing it to remove misincorporated bases

Elongating RNA Pol must deal with Histones in its path

- □ How does RNA Pol transcribe through histones?
- FACT (facilitates chromatin transcription) is a heterodimer of 2 proteins: Spt16 & SSRP1> It makes transcription on chromatin templates more efficient
- □ How does FACT work?
- □ Spt16 binds to H2A/H2B & SSRP1 binds to H3/H4
- □ FACT can dismantle and reassemble histones
- FACT has a histone chaperon activity> allows it to restore H2A/H2B dimer to histone octamer

