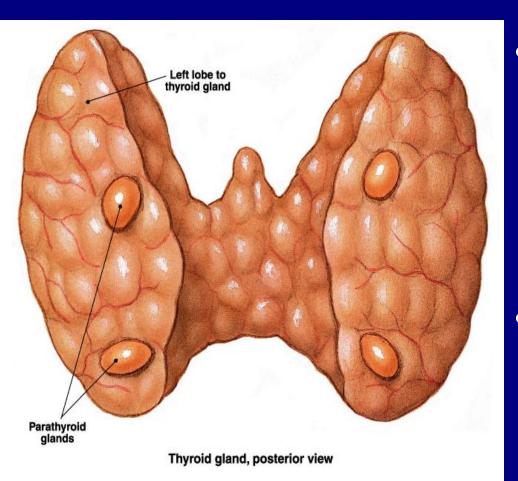
Calcium Metabolism


Extra cellular Ca

- ➢ 8.5-10.5 mg/100 ml
- Only ionized calcium [Ca⁺⁺] (50% of total) is regulated; 40% bound to albumin; 10% complexed to phosphate and citrate.
- Excitation contraction of heart and other muscles, secretion, synaptic transmission, platelet aggregation, coagulation.

Intracellular Ca

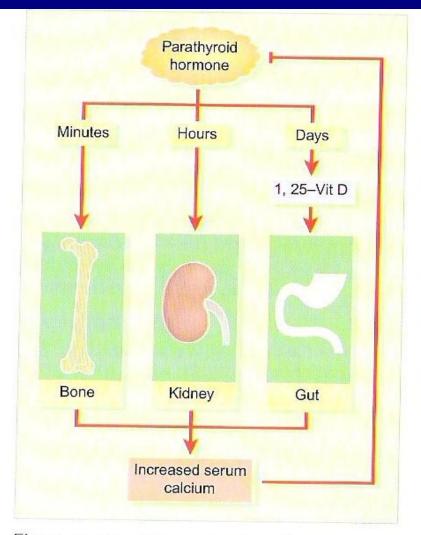
Second messenger, cell division, muscle contraction, cell motility, membrane trafficking and secretion.

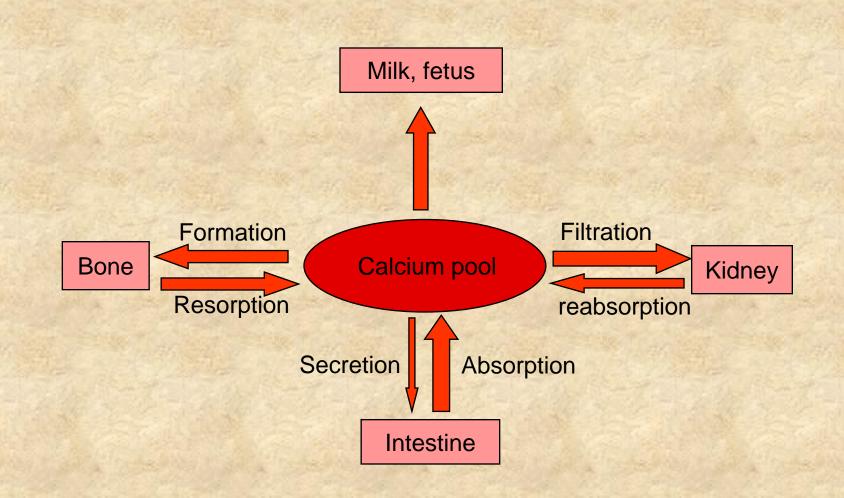
Parathyroid Glands

The parathyroid glands are small in size and are found on the posterior aspect of the thyroid gland.

• Typically, there are four of them but the actual number may vary.

Calcium Metabolism




Fig. 1 Calcium homeostasis and parathyroid hormone feedback.

Calcium Homeostasis

 Maintain [Ca⁺⁺] ECF.
 Requires parathyroid hormone (PTH) and Vit. D.

Regulate Ca exchange: the gut, bone, renal tubule.

Calcium Flow

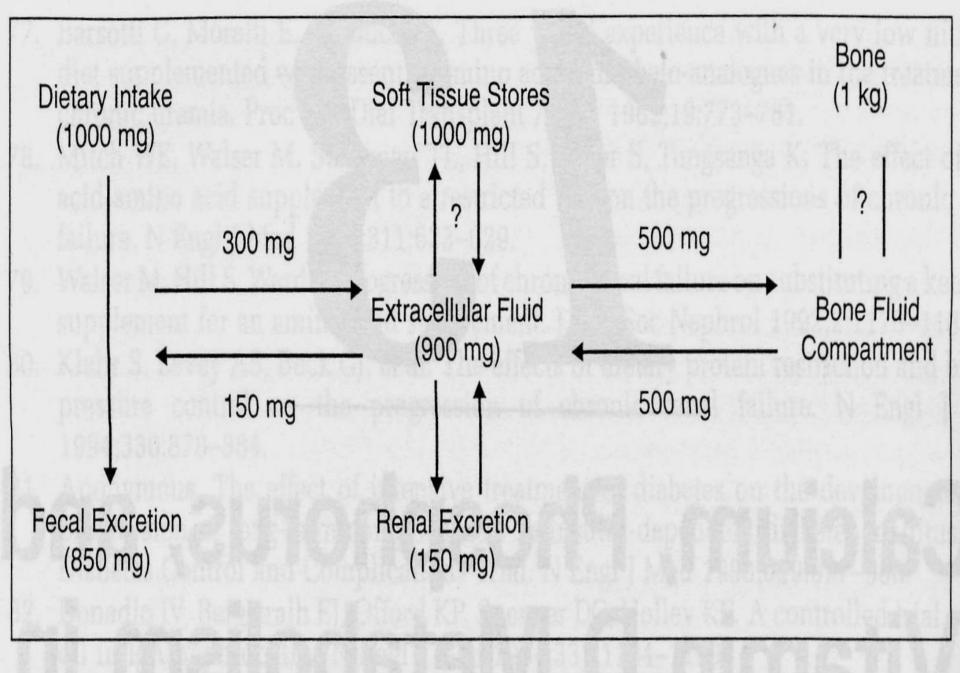
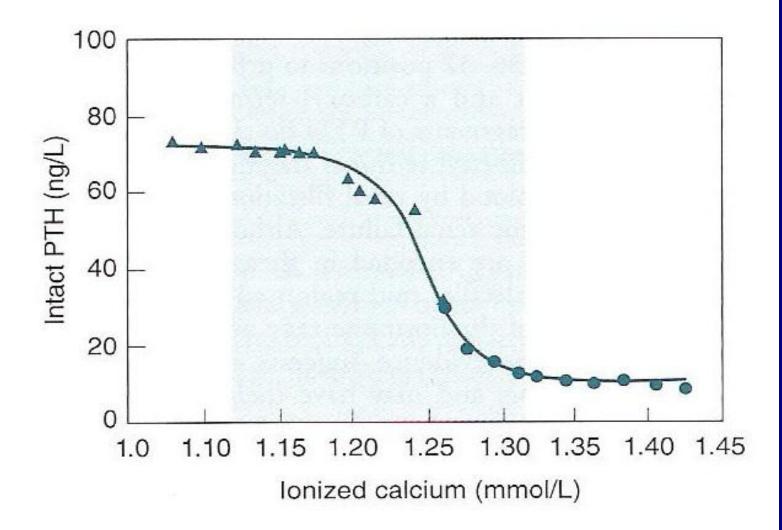
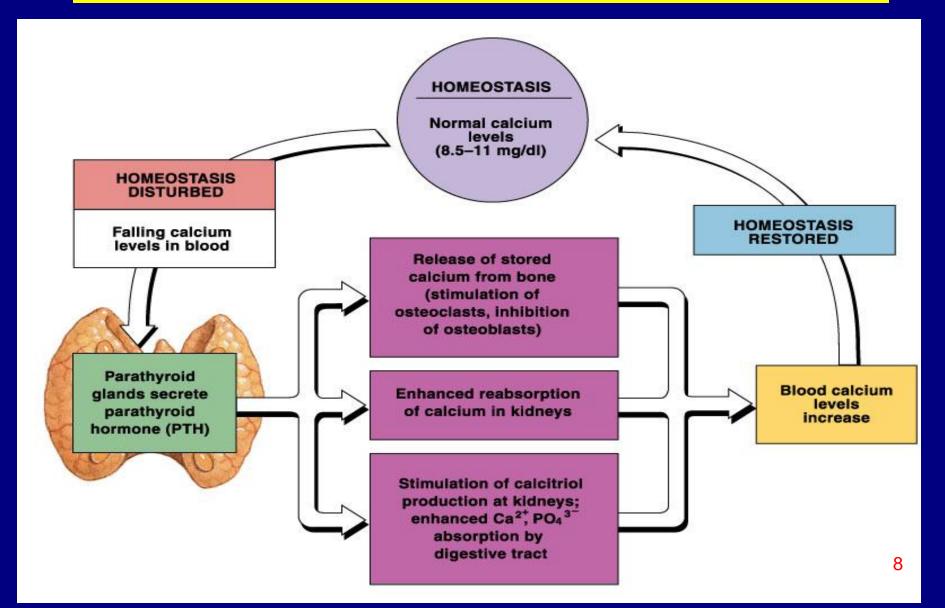


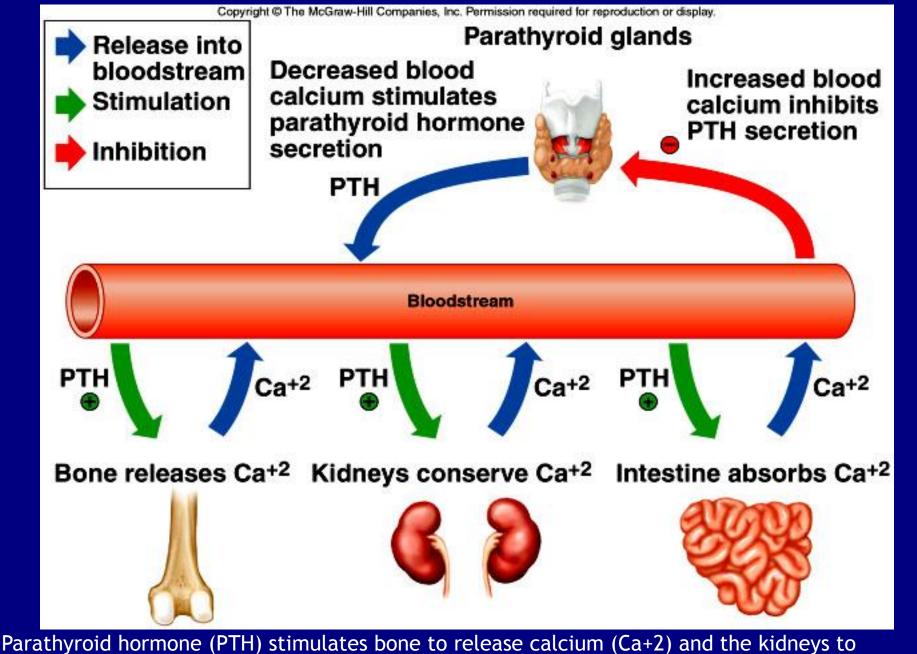
Figure 13.1. Diagrammatic representation of normal adult calcium balance.

Parathyroid Hormone [PTH]


Secretion of PTH: Role of serum Ca++

Ca⁺⁺ negatively feedback inhibits PTH (sigmoidal)
 Ca receptor: G protein coupled (Gq) PIP₂ → IP₃ →
 ↑ Ca influx, ↑Ca release from stores → ↑ [Ca⁺⁺]i →
 ↓ PTH secretion [Mg++ - mediated process].


 Low Ca⁺⁺ → ↑ prepro-PTH mRNA stabilization,
 ↑ Gene transcription

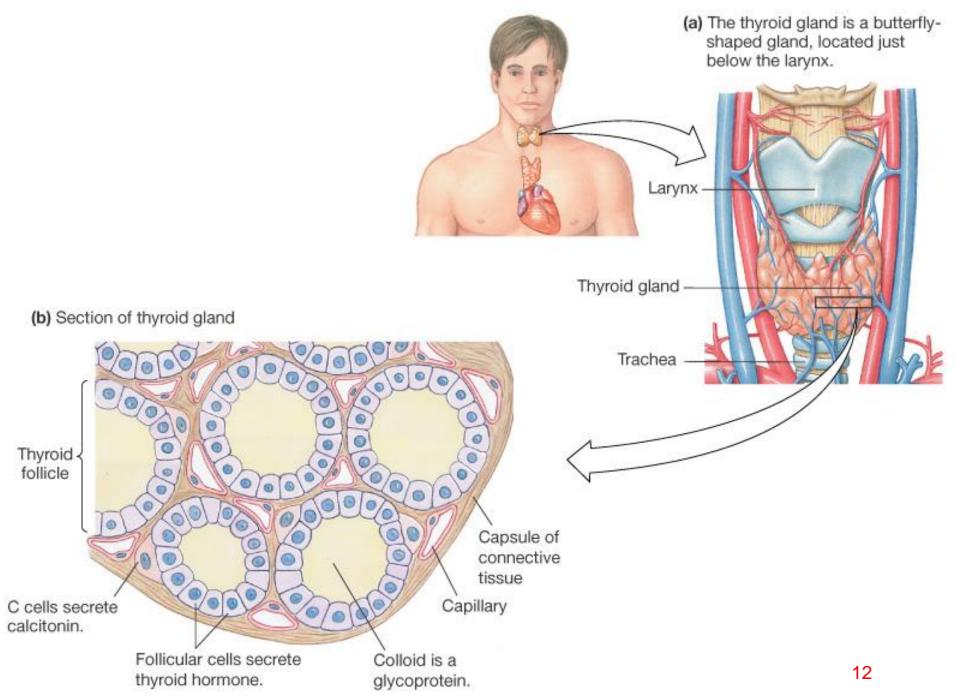

 Vit. D → ↓ PTH gene transcription

Serum Ca++ and PTH secretion

Calcium Homeostasis: Role of PTH

conserve calcium. It indirectly stimulates bone to release calcium (Ca+2) and the kidneys to increase on the calcium. The resulting increase on the secretions of PTH increase of the calcium concentration inhibits secretions of PTH

Mechanism of Action of PTH


- PTH receptor -1 (kidney and bone): recognizes PTH and PTH related Protein (PTH-rP).
 - PTH receptor-2: PTH only.

- G_s : \uparrow cAMP (Calcium homeostasis, phosphate excretion).
- $G_q: \uparrow PLC \to \uparrow [Ca^{++}] \to \uparrow \text{ protein}$ kinas C.

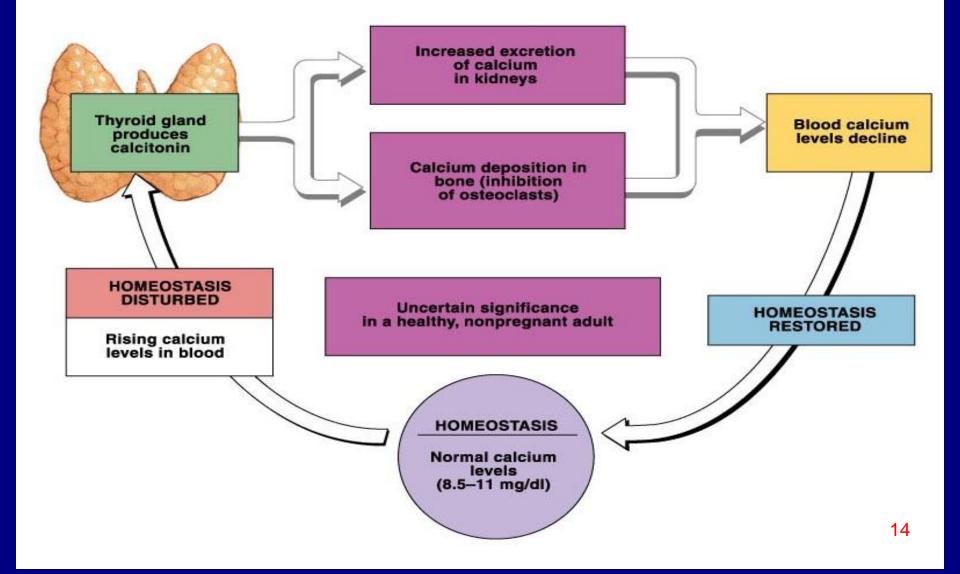
Calcitonin

Structure

- Peptide: 32 amino acids.
- Secreted by: parafollicular C cells of the thyroid

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Calcitonin


Function

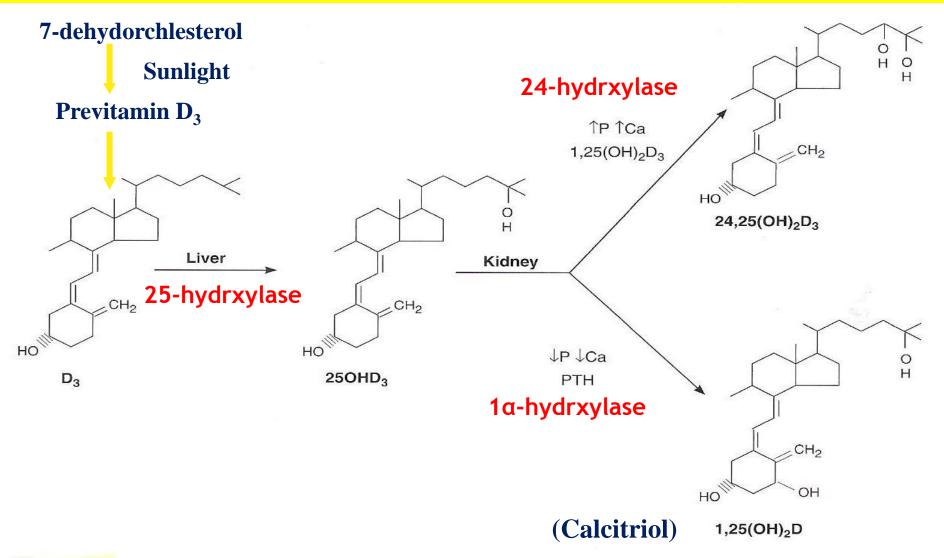
- No physiologic role.
- Removal of thyroid: no impact on Calcium.
- Calcitonin by thyroid carcinoma: no effect on Calcium homeostasis.

Clinical

- Tumor marker in thyroid carcinoma.
- Therapeutic: inhibitor of osteoclastic bone resorption. Treatment of hypercalcemia and osteoporosis.
 13

Calcium Homeostasis: Role of Calcitonin

Vitamin D


Chemistry

- Vitamin D (calciferol): D₂ (ergocalciferol) + D₃ (cholecalciferol).
- Vit. D₃ is produced from 7-delydrocholesterol (skin).

Dietary Source

Dairy products supplemented with vit. D.
Fish-oils, fish liver, eggs.
RDA: 400 units (1U = 0.025 mg vit. D)

Vitamin D ...

Figure 8–9. The metabolism of vitamin D. The liver converts vitamin D to 25(OH)D. The kidney converts 25(OH)D to $1,25(OH)_2D_3$ and $24,25(OH)_2D$. Control of metabolism is exerted primarily at the level of the kidney, where low serum phosphorus, low serum calcium, and high parathyroid hormone (PTH) levels favor production of $1,25(OH)_2D_3$.

Vitamin D ...

Binding Proteins

Vit. D Binding Protein (DBP) 85%, albumin 15%

Metabolism

- > Vit. D \rightarrow 25(OH) D in liver.
- ➤ Kidney: 25(OH) $D_3 \rightarrow 1,25(OH)_2 D_3$ (stimulated by PTH) or 24,25 (OH)₂ D_3 .

Vitamin D Effects

a. Intestinal Calcium Transport: 1,25 (OH)₂D₃

Vitamin D Effects ...

b. Action of Vitamin D on Bone

- > 1,25 (OH)₂ D_3 regulates bone formation + resorption.
- **>** Deficiency 1,25 (OH)₂ D_3 : Rickets.
- Type 1 (Vit. D- dependent, pseudo vitamin D deficient). Treated with calcitriol.
- Type 2 (Vit. D-dependent, hereditary 1,25 $(OH)_2 D_3 -$ resistant). Treated with Ca and phosphate.

In organ culture of bone:

- Bone resorption: best established action.
- > ↑ Osteoclast, \downarrow collagen synthesis.
- Osteoblast differentiation: less clear, depend on stage.
 - Early stage : \uparrow collagen, alkaline phosphate.
 - Mature osteoblasts: \downarrow collagen \downarrow alkaline phosphate. ¹⁹

Vitamin D Effects ...

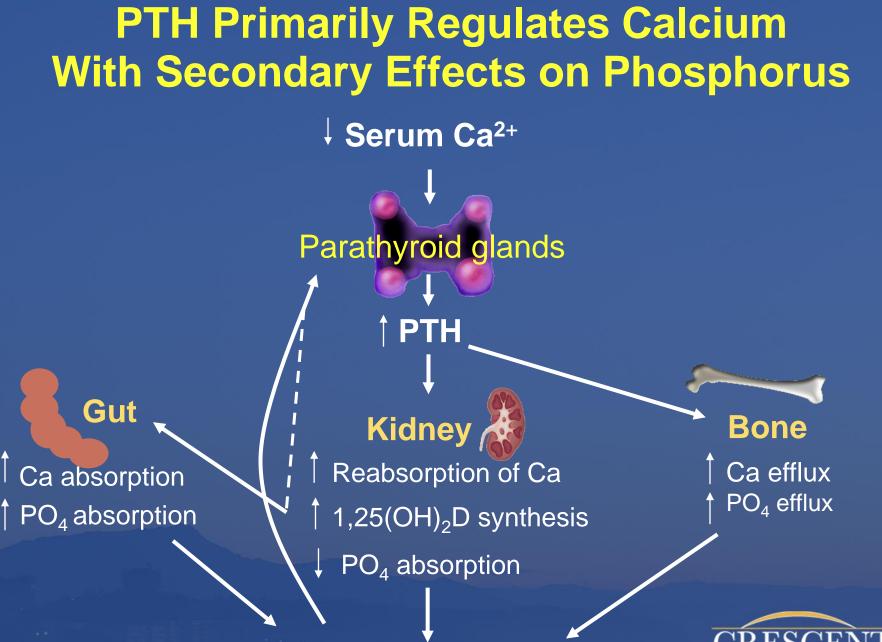
c. Action of Vitamin D Kidney

- ▶ 1,25 (OH)₂ D₃ ↑ calbindin and Ca-ATPase in distal tubule.
- Role of 1,25 (OH)₂ D₃ in Ca and PO₄ transport (controversial) 25(OH)D₃ may be more important.

Vitamin D Effects ...

Malignancies (anti proliferating actions of 1,25 (OH)₂ D₃
 Vitamin D analogs: treatment of hyperparathyroidism and osteoporosis.

Integrated Control of Mineral Homeostasis


↓ Ca level leads to

≻↑ PTH

- \uparrow Ca, PO₄ release from bone.
- Retention of Ca by the kidney, PO₄ excretion.

>↑ 1,25 (OH)₂ D_3

- ↑ Ca absorption.
- ↑ bone resorption.

Serum [Ca²⁺] Restored

CRESCENT The Critical Role of Server Coldium: An Educational Network for Secondary Hypergara Thyroidiam

Clinical Features

CNS effects, neuromuscular effects, cardiovascular effects, renal effects, G.I. effects, eye effects, calcification

Mechanisms

- 1. \uparrow G.I absorption of Ca.
- 2. \uparrow Bone resorption (Common)
- 3. \downarrow Renal excretion of Ca

Hypercalcemia Disorders

Primary Hyperparathyroidism Excessive secretion of PTH, 2-3x in women as in men

Etiology

Parathyroid carcinomaParathyroid hyperplasia

Primary Hyperparathyroidism ...

Clinical Features

1. Bone disease:

Osteitis fibrosa cystica: bone pain, fracture Osteoporosis: loss of cortical bone

2. Kidney disease:

Kidney stones (15% of cases): Ca oxalate

Compromise renal concentrating ability: polyuria

3. Nonspecific features: Coma, CNS mild impairment

Lab. Findings: $\uparrow Ca$, $\downarrow PO_4$, $\uparrow PTH$

Hypocalcemia

Classification

1. **PTH:** Failure to secrete or respond to PTH.

2. Vitamin D: deficiency of vitamin D or failure to respond vitamin D.

Hypocalcemia ...

Clinical Features

- Neuromuscular excitability: Tetany, paresthesias, seizures.
- Ca deposition in soft tissues: Cataract, calcification of basal ganglia.
- Cardiac effects: Prolonged QT interval, Impaired excitation–contraction coupling.
- Dermatologic effects: Dry and flaky skin, brittle nails.

- 1. Hypoparathyroidism Causes
- Surgical: Neck surgery (cancer surgery, total thyroidectomy or parathyroidectomy)
- Idiopathic: polyglandulor endocrinopathies.
- Familial Hypoparathyroidism
 - PTH gene mutations: affect PTH processing.
 - Parathyroid Ca sensing receptor gene mutations: active receptor suppresses PTH at low or normal Ca levels.

- **1. Hypoparathyroidism ... Other causes of Hypoparathyroidism** Thalassemia: Fe deposition in the glands. Cu deposition in Wilson's disease.
 - Al deposition.
- \triangleright Mg depletion: prevents PTH secretion and action (G.I. and renal disorders, alcoholism).

- 2. Pseudohypoparathyroidism Causes
 - PTH resistance of target tissues: hypocalcemia, hyperphosphatemia, elevated PTH

- **3. Vitamin D Deficiency**
- Pathogenesis

Inadequate sunlight exposure, inadequate nutrition, malabsorption.

Clinical Features

Osteomalacia and rickets, low serum Ca and $PO_{4.}$ Low 25 (OH) D (diagnostic), normal 1,25 (OH)₂ D_{3.}

Treatment

Vitamin D supplemented with Ca.

- 4. Vitamin D-Dependent Rickets Type 1
 - \succ Low levels of 1,25 (OH)₂ D₃
 - Mutation in 1-hydroxylase.
 - Treatment : calcitriol
- 5. Vitamin D-Dependent Rickets Type II
 - > Hereditary 1,25 (OH)₂ D_3 resistant rickets
 - \succ High 1,25 (OH)₂ D₃
 - Mutations in VDR gene
 - Treatment: large doses of calcitriol and dietary Ca

6. Other Hypocalcemic Disorders:

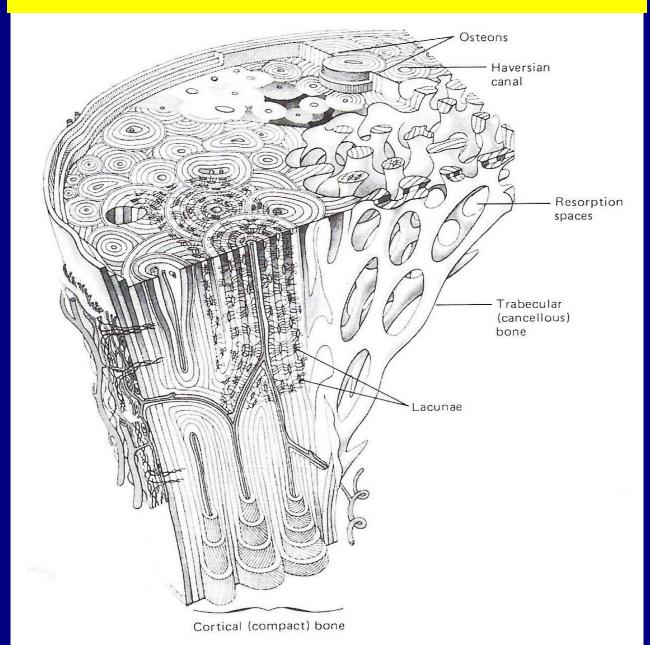
- 1. Hypoalbuminemia.
- 2. Transfusion of Citrate Blood.

Bone Anatomy and Remodeling

Functions of Bone

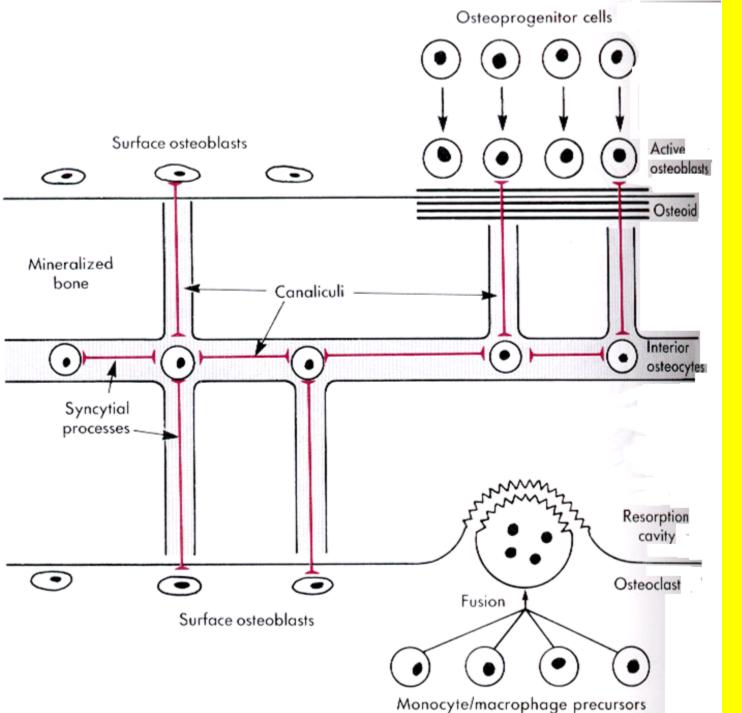
- Support of extremities and body cavities.
- 2. Locomotion (levers, sites of attachment to muscles)
- Reservoir of ions: Ca, PO₄,
 Mg, Na.

Bone Anatomy and Remodeling ...


Structure of Bone

- Mineralized collagen: rigidity.
- Trabecular (cancellous): strength and elasticity.
- Some weight: $\frac{2}{3}$ Minerals, $\frac{1}{3}$ (collagen + H₂O).

Bone minerals


- Hydroxyapatite
- Amorphous Ca, PO₄ (active bone formation, young bones)
 36

Bone Structure

Bone Cells

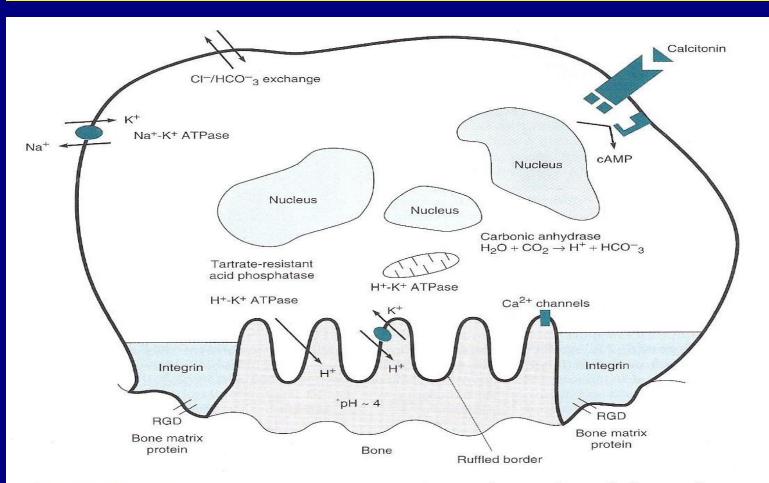
1. Osteoblast: Bone–forming cell > PTH and vitamin D receptors. Alkaline phosphatase required. Bone matrix protein genes: type1 collagen, osteocalcin Mineralization: deposition of hydroxyapatite on collagen layers, Ca, PO_4 , alkaline phosphatase 38

Bones cells

Bone Cells ...

2. Osteocyte:

Trapped osteoblasts during remodeling.


Translocation of mineral in and out of removed bone regions.

Bone Cells ...

3. Osteoclast: bone resorption cell

- Secretes acid, proteases.
- Regulation of bone resorption: number and activity of osteoclasts.
- Receptors for calcitonin, not PTH or vitamin D.

Osteoclasts: Bone resorption

Figure 8–22. Osteoclast-mediated bone resorption. The osteoclast attaches to the bone surface via integrin-mediated binding to bone matrix bone proteins. When enough integrin binding has occurred, the osteoclast is anchored and a sealed space is formed. The repeatedly folded plasma membrane creates a "ruffled" border. Secreted into the sealed space are acid and enzymes forming an extracellular "lysosome." (Reproduced, with permission, from Felig P, Baxter JD, Frohman LA [editors]: *Endocrinology and Metabolism*, 3rd ed. McGraw-Hill, 1995.)

Bone Remodeling

• A continuous process of breakdown and renewal that occurs throughout life.

Bone remodeling units (BMUs)

- Appropriate signal: bone marrow cells migrate, fuse to form osteoclasts, dig a cavity into the bone.
- Resorption is completed (60 µm deep) by 2-3 months.
- Precursors of osteoblasts recruited to the base of resorption cavity.
- Expression of bone-specific proteins: alkaline phosphatase, osteopontin, osteocalcin (bone matrix) 20µm.
- Mineralization begins
- Remodeling cycle 6 months.

Bone Remodeling Unit

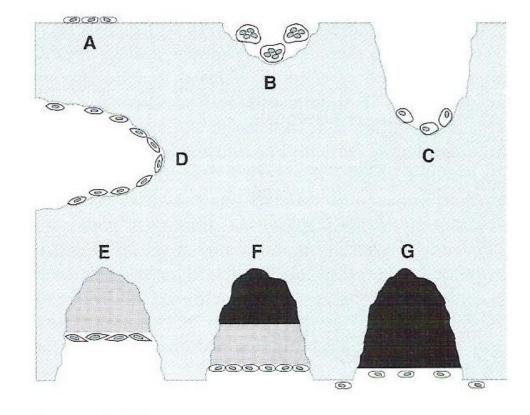


Figure 8–20. The remodeling cycle. A: Resting trabecular surface. B: Multinucleated osteoclasts dig a cavity of approximately 20 microns. C: Completion of resorption to 60 microns by mononuclear phagocytes. D: Recruitment of osteoblast precursors to the base of the resorption cavity. E: Secretion of new matrix (gray shading) by osteoblasts. F: Continued secretion of matrix, with initiation of calcification (black areas). G: Completion of mineralization of new matrix. Bone has returned to quiescent state, but a small deficit in bone mass persists.

Osteoporosis

Osteoporosis: low bone mass and microarchitectural disruption that results in fractures.

Primary osteoporosis: reduced bone mass and fractures in postmenopausal women (postmenopausal osteoporosis) or in older men and women ("senile" osteoporosis)

Secondary osteoporosis: bone loss resulting from specific clinical disorders, such as thyrotoxicosis, hyperadrenocortisolism.

Common sites of fragility: vertebral bodies, distal forearm, proximal femur.

Glucocorticoid–induced osteoporosis

Children: chronic exposure to glucocorticoids impairs skeletal growth.

Adults: glucocorticoids induced bone loss and muscle weakness:

- a. renal Ca losses: \Ca reabsorption
- b. intestinal Ca losses: \downarrow Ca absorption $\rightarrow \uparrow$ PTH action (independent of vitamin D)
- c. Skeletal losses: ↓osteoblast maturation + activity;
 ↑osteoblast apoptosis

 \downarrow gonadotropin \rightarrow loss of gonadal function \rightarrow bone.

Gain, Maintenance and Loss of Bone

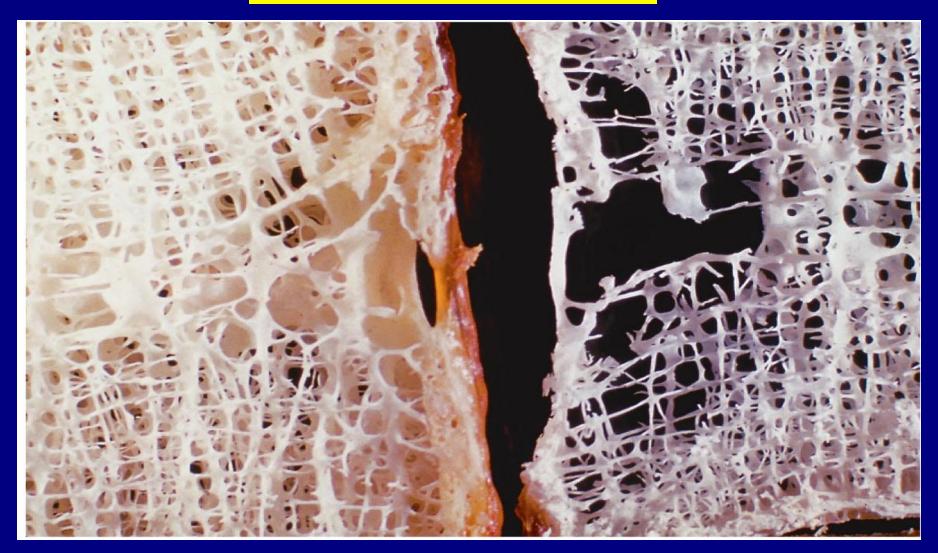
Bone Acquisition

- Completed by 17 years in girls and 20 years in boys.
- Factors: Genes, gonadal steroids, physical activity, nutrition.
- Estradiol: initiation of adolescence growth and bone acquisition.
- "hygienic" factors: diet, physical activity, reproductive status.

Bone Loss

Bone Loss

- ➢ Estrogen deficiency: ↑osteoblast cytokines IL-6 → ↑osteoclast activity.
- Ca loss from 20 mg to 60 mg, fracture in women 2x as men.


Bone loss in later life

➢ Progressive deficit in renal and intestinal function
→ ↓ 1,25 (OH)₂ D₃ → ↓intestinal Ca absorption → ↑PTH.

Diagnosis of Osteoporosis

X-ray, BMD (Osteoporosis: ↑ -2.5 SD);
 (Osteopenia: -1 to -2.5 SD).

Osteoporosis

Normal bone (left) and bone loss in osteoporosis (right)

Treatment of Osteoporosis

Specific Antiresorptive Agents a. Calcium

• Adequate Ca intake: prevention and treatment of osteoporosis in all patients.

b. Vitamin D and Calcitriol

- Vitamin D below 25-30 ng/ml ↑ PTH secretion
 → ↑ bone turnover
- Vitamin D analogs or metabolites (calcitriol)
- Vitamin D nutritional adequacy.

Treatment of Osteoporosis ...

c. Estrogens

- Timely replacement of estrogen conserves bone mass
- (Early menopause) + Calcium supplementation.
- Side effects: hot flushes, cardiovascular disease, breast cancer.

Treatment of Osteoporosis ...

d. Selective Estrogen Response Modulators

- Tamoxifen: estrogen agonist on bone, liver, uterus, antiestrogen at the breast and brain.
- Raloxifen: estrogen agonist at bone and liver (conservation of BMD, lowering LDL). Inert at the endomentrium, potent antiestrogen at the beast.

e. Calcitonin

Inhibitor of osteoclastic bone resorption, \uparrow spine BMD

f. Bisphosphonates

Alendronate, potent antiresorptive drug.

Treatment of Osteoporosis ...

Bone-Forming Agents

a. Fluoride

Although fluoride *†*BMD, Doubt to reduce fracture.

b. Androgen

Testosterone increases bone mass of hypogonadal men. In women: virilizing side effects.

c. PTH

Recombinant human PTH (rh PTH 1-34) ↓vertebral factures by 50%.

Coadministration (PTH with estrogen or androgen) impressive gain in spine mineral density.

Osteomalacia and Rickets

Abnormal mineralization of bone and cartilage. Pathogenesis

Osteomalacia

Bone defect, the epiphysis plates have closed (in adults). **Rickets**

In growing bone (in children). Abnormal mineralization affects the transformation of cartilage into bone.

Causes:

- Vitamin D deficiency (main cause).
- Hypophosphatasia \rightarrow alkaline phosphatase deficiency.
- Drugs: (Inhibitors of mineralization, Al, F, Etidronate)

Paget's Disease of Bone (Osteitis Deformans)

Etiology

Accelerated rates of bone turnover.

Gross deformities of bone might be due to virus infection of bone.

Pathology

- Highly vascular and cellular bone (high metabolic activity).
- Huge osteoclasts (100 nuclei/cell).
- ➢ Mosaic pattern of lamellar bone.

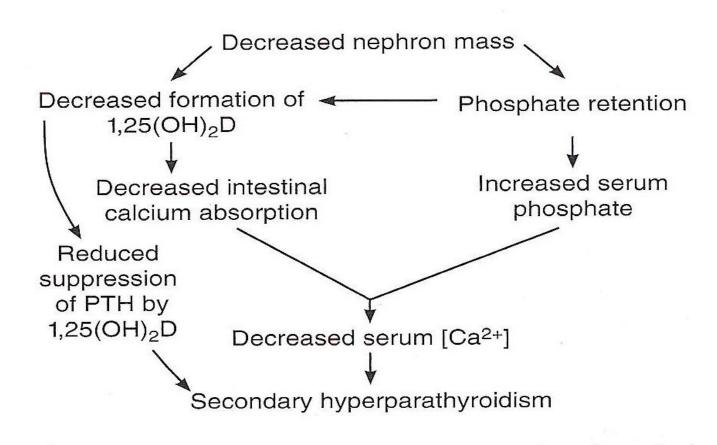
Renal Osteodystrophy

Pathogenesis

- - phatemia.
 - ↓Ca, ↓1,25 (OH)₂ D₃ → hyperparathyroidism → osteitis fibrosa, osteomalacia. 56

Renal Osteodystorphy ...

Clinical Features


Osteitis fibrosa, osteomalacia

 \downarrow Ca, \uparrow PO₄, alkaline phosphatase, \uparrow PTH.

Treatment

Calcitriol, Ca carbonate Phosphate restriction

Renal Osteodystorphy ...

Figure 8–34. Schema for the pathogenesis of renal osteodystrophy.