ADRENAL MEDULLA

The adrenal medulla is a specialized part of the sympathetic nervous system that secrets catecholamines. The sympathetic nervous system typically secretes **norepinephrine** as a local neurotransmitter directly in target organs. In comparison, the adrenal medulla is important for its secretion of **epinephrine** and other substances into the general circulation of widespread distribution and effect. Although the adrenal medulla is not critically necessary for survival, its secretion of epinephrine and other compounds helps maintain the body's homeostasis during stress.

Pheochromocytomas: are tumors that arise from the adrenal sympathetic ganglia. These tumors can secrete excessive amounts of *epinephrine* and *norepinephrine*, causing a dangerous exaggeration of the stress response.

In humans, the adrenal medulla occupies a central position of the gland. There is no clear demarcation between the cortex and medulla. The adrenal medulla constitutes about one tenth of the weight of the gland.

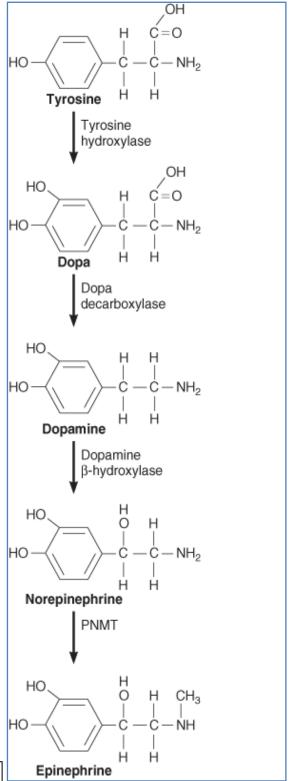
The **chromaffin cells**, or **pheochromocytes**, of the adrenal medulla contain large numbers of vesicles or granules containing catecholamines. The adrenal medulla also contains some sympathetic ganglion cells. The cells of the adrenal medulla are innervated by preganglionic fibers of the sympathetic nervous system, which release acetylcholine and enkaphlins at the synapse.

In mammals, the enzyme that catalyzes the conversion of norepinephrine to epinephrine is induced by cortisol. The chromaffin cells containing epinephrine therefore receive most of their blood supply from the capillaries draining the cortical cells, whereas cells containing predominantly norepinephrine are supplied by arteries that directly supply the medulla.

Hormone of the Adrenal medulla

Catecholamines

Biosynthesis: catecholamines are molecules that have catechol nucleus (benzene with two hydroxyl groups) plus a side chain amine. Catecholamines include dopamine, epinephrine, and norepinephrine (Fig. 11-2). In mammals, epinephrine is synthesized mainly in the adrenal medulla, whereas norepinephrine is found not only in the adrenal medulla but also in the CNS and in the peripheral sympathetic nerves. Dopamine, the precursor of norepinephrine, is found in the adrenal medulla and in noradrenergic neurons. It is present in high concentration in the brain and in specialized interneurons in the sympathetic ganglia where it serves as a neurotransmitter.


The catecholamines are synthesized from tyrosine, which may be derived from ingested food or synthesized from phenylalanine in the liver. Tyrosine is converted to L-dihydroxyphenylalanine (L-dopa) by tyrosine hydroxylase, which is transported to the nerve terminal. Tyrosine hydroxylase is the rate-limiting step in catecholamine synthesis. α -Methyltyrosine is an effective inhibitor as is sometimes used in the therapy of malignant pheochromocytomas.

Dopa is converted to dopamine by the enzyme dopa decarboxylase. Dopamine enters granulated storage vesicles where it is hydroxylated to norepinephrine by the enzyme dopamine β -hydroxylase (DBH), which is within vesicle found the membrane. Norepinephrine is then stored in the vesicle. The granulated storage vesicle migrates to the cell surface and secretes its contents via exocytosis; both norepinephrine and DBH are released during exocytosis. After secretion, most norepinephrine is recycled back into the Normally, most nerve. circulating norepinephrine originates from diffusion out of nonadrenal sympathetic nerve cells.

Norepinephrine can diffuse into the cytoplasm and is converted to epinephrine by the enzyme 4-phenylethanolamine–N-methyltransferance (PNMT). Epinephrine can then return to the vesicle. High concentrations of cortisol enhance the expression of the gene encoding PNMT. Cortisol is present in high concentrations in most areas of the adrenal medulla. This accounts for the fact that in the adrenal medulla about 80% of the catecholamine content is epinephrine while only 20% is norepinephrine.

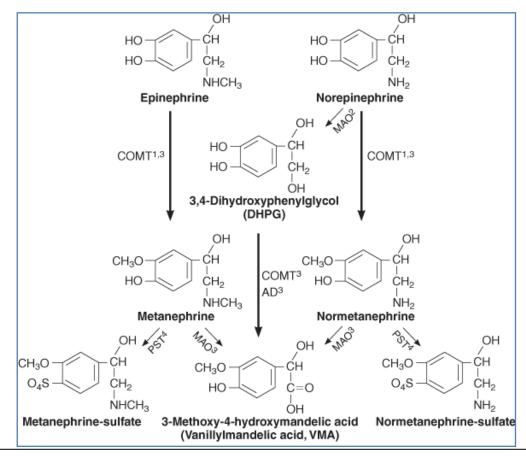

The enzyme PNMT is found in many tissues like the lungs, kidneys, pancreas, and cancer cells. Therefore, a nonadrenal tissue is capable of synthesizing epinephrine if norepinephrine is available as a substrate. PNMT is found in human lung; in vivo exposure of bronchial epithelial cell lines to dexamethasone increases the expression of PNMT. Thus, glucocorticoids could potentially increase local concentration of epinephrine in the lung; this might be one potential mechanism for the effectiveness of systemic and inhaled glucocorticoids in asthma.

Figure 11-2. Biosynthesis of catecholamines (PNMT. phenvlethanolamine-*N*-methvltransferase).

Secretion: adrenal medullary catecholamine is increased by exercise, angina pectoris, myocardial infarction, hemorrhage anesthesia, surgery, hypoglycemia, asphyxia, and many other stressful stimuli. Secretion of the adrenal medullary hormones is mediated by the release of acetylcholine from the terminals of preganglionic fibers. The resulting depolarization of the axonal membrane triggers an influx of Ca^{++} . The contents of storage vesicles are released by exocytosis by the calcium ion increase.

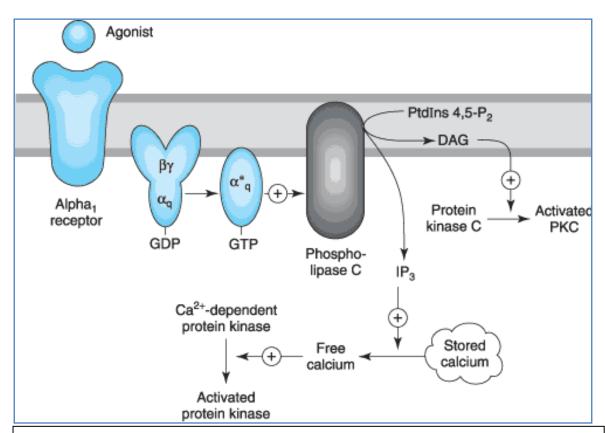

Metabolism and Inactivation of Catecholamines: Catecholamines are quickly metabolized into inactive compounds, including metanephrine, vanillylmandelic acid (VMA), and conjugated catecholamines (Fig. 11-3). Excess intracellular norepinephrine is inactivated primarily by deamination, catalyzed mainly by monoamine oxidase (MAO). Peripheral circulating norepinephrine is metabolized largely to normetanephrine by Catechol-O-methyltransferase (COMT). Epinephrine is similarly catabolized to metanephrine, some of which is then converted to VMA (Fig. 11-3). Catecholamines and metabolites are excreted in the urine; 50% metanephrines, 35% VMA, 10% conjugated catecholamines and other metabolites and <5% free catecholamines.

Figure 11-3. Metabolism of catecholamines: by catechol-*O*-methyltransferase (COMT), monoamine oxidase (MAO), aldehyde dehydrogenase (AD), and phenol-sulfotransferase (PST). (1) Adrenal medulla or pheochromocytoma; (2) Sympathetic nerves; (3) Liver and kidneys; (4) GI, platelets, lungs.

Adrenergic Receptors: Adrenergic receptors were first classified by the relative potencies of a series of adrenergic agonists and antagonists. Each of the subtypes is now known to be coded for by one or more separate genes (Table 11-3). The physiologic effects mediated by then are summarized in Table 11-4. The adrenergic receptors are transmembrane proteins coupled to G proteins. The G proteins consist of α , β and γ subunits. There are many G proteins that have different α subunits while the β and γ subunits are similar. When hormone binds to the receptor, the β and γ subunits dissociate from the α subunits allowing GDP to the replaced by GTP on the α subunits and causing the β and γ subunits to dissociate from it. The GTP-bound α subunits activate the post receptor pathways (Fig. 11-5).

Table 11–3. Catecholamine Receptor Types and Subtypes. ¹				
Receptor	Relative Agonist Potency	Effects	Gene on Chromosome	
Alpha ₁ type	Nonepinephrine > epinephrine	↑IP ₃ , DAG common		
Alpha _{1A}		to all	C5	
Alpha _{1B}			C8	
Alpha _{1D}			C20	
Alpha ₂ type	Nonepinephrine > epinephrine;	\downarrow cAMP; \uparrow K ⁺ channels; \downarrow Ca ²⁺		
Alpha _{2A}	clonidine	channels; $\downarrow Ca^{2+}$	C10	
		channels		
Alpha _{2B}	Nonepinephrine > epinephrine	\downarrow cAMP; \downarrow Ca ²⁺	C2	
		channels		
Alpha _{2C}		↓cAMP	C4	
Beta type	Epinephrine > nonepinephrine;	↑cAMP		
Beta ₁	Isoproterenol; dobutamine		C10	
Beta ₂	Epinephrine >>>	↑cAMP	C5	
	nonepinephrine; terbutaline			
Beta ₃ and	BRL37344; CGP12177A	↑cAMP	C8	
putative beta ₄				

Figure 11-5. Activation of α_1 adrenergic responses. Stimulation of α_1 receptors by catecholamines leads to the activation of a G_q subunit. The subunit of this G protein activates the effector, phospholipase C, which leads to the release of IP₃ (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) from phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P₂). IP₃ stimulates the release of sequestered stores of calcium, leading to an increased concentration of cytoplasmic Ca²⁺. Ca²⁺ may then activate Ca²⁺-dependent protein kinases, which in turn phosphorylate their substrates. DAG activates protein kinase C.

Table 11–4. Catecholamine Receptors: Location and Actions.Type of CatecholamineTissue LocationAction following Receptor				
Receptor	Location	Action following Receptor		
Alpha ₁	Vascular smooth	Increases vasoconstriction (increases		
Tupna	muscle	blood pressure)		
	Liver	Increases glycogenolysis and		
		gluconeogenesis		
	Eye	Increases ciliary muscle contraction		
		(pupil dilation)		
	Skin	Increase pilomotor smooth muscle		
		contraction (erects hairs)		
	Prostate	Increases contraction		
	Uterus	Increases contraction		
Alpha ₂	Pancreatic islet cells	Decreases release of insulin and		
1 -		glucagon		
	Blood platelets	Increases platelet aggregation		
	Adipose cells	Decreases lipolysis		
	Preganglionic and	Decreases release of neurotransmitter		
	postganglionic nerves	(negative feedback inhibition)		
Beta ₁	Myocardium	Increases force and rate of contraction		
	Kidney	Increases secretion of renin		
	(juxtaglomerular			
	apparatus)			
	Most tissues	Increases calorigenesis		
	Nerves	Increases conduction velocity		
Beta ₂	Intestinal smooth	Decreases intestinal motility		
	muscle	Increases sphincter tone		
	Bronchiolar smooth	Decreases contraction (bronchial		
	muscle	dilation)		
	Liver	Increases glycogenolysis and		
		gluconeogenesis		
	Pancreatic islet cells	Increases release of insulin and		
		glucagon		
	Adipose tissue	Increases lipolysis		
	Muscles	Increases potassium uptake (prevents		
		hyperkalemia)		
	Liver and kidney	Increases peripheral conversion of T ₄		
		to T ₃		
	Uterus smooth muscle	Decreases uterine contraction (uterine		
		relaxation)		
Beta ₃	Adipose cells	Increases lipolysis		
Dopamine ₁	Renal artery smooth	Decreases vasoconstriction (dilation		
	muscle	of renal artery)		
Dopamine ₂	Nerve terminals	Controls neurotransmitter release		

- A. Alpha–Adrenergic Receptors: The α_1 subtypes are postsynaptic receptors that typically mediate vascular and other smooth muscle contraction. When agonist binds to this receptor, G_q is released and activates phospholipase C. Epinephrine and norepinephrine are potent agonists for this receptor, while isoproterenol is weakly active. α_2 receptors were first identified at the presynaptic sympathetic nerve ending and, when activated, served to inhibit the release of norepinephrine. However, these receptors have been found in platelets and postsynaptically in nervous system, adipose tissue, and smooth muscle. Agonist binding to the α_2 receptor release $G_i \alpha$, which inhibits adenylyl cyclase. Prazosin is a selective antagonist at the α_2 , whereas phentolamine and phenoxybenzamine act at both.
- B. **Beta–Adrenergic Receptor**: Agonist binding to the beta-adrenergic receptors activates adenylyl cyclase via the Gs α subunit. There are three major beta-receptor subtypes. The β_1 receptor, which mediates the direct cardiac effects, is more responsive to isoproterenol than to epinephrine or norepinephrine. The β_2 receptor mediates vascular, bronchial, and uterine smooth muscle relaxation, probably by phosphorylating myosin light chain kinase. Isoproterenol is also the most potent agonist at this receptor, but epinephrine is much more potent than norepinephrine. The β_3 gene in Pima Indians are associated with earlier onset of type 2 diabetes. In the heart, β_3 stimulation causes decreased ventricular contraction by increasing nitric oxide.
- C. **Dopamine Receptors:** Dopaminergic receptors are found in the CNS presynaptic adrenergic nerve terminals pituitary, heart, renal, and mesenteric vascular beds. Five subtypes of the dopaminergic receptor, D_1 to D_5 .

The binding affinity of the D_1 receptor is greater for dopamine than for haloperidol; the reverse is true for the D_2 receptor. The effect of the D1 receptor is greater for dopamine than for haloperidol; the reverse is true for the D_2 receptor. The effects of the D_1 receptor are mediated by stimulation of the adenylyl cyclase system and are found postsynaptically in the brain. Those in the pituitary are D_2 receptors that inhibit the formation of cAMP, open K⁺ channels, and decrease Ca⁺⁺ influx.

Regulation of Activity: the major physiologic control of sympathoadrenal activity is exerted by alterations in the rate of secretion of catecholamines. However, the receptor and postreceptor events serve as sites of five regulations. Norepinephrine released during presynaptic nerve stimulation binds to α receptors and reduced the amount of norepinephrine released. The number of receptors on the effector cell surface can be reduced by binding of agonist to receptor "down-regulation". The mechanisms involved in some of these changes are known. For example, phosphorylation of the beta-adrenergic receptor by beta-adrenergic receptor kinase results in their sequestration into membrane vesicles internalization and degradation. The phosphorylated receptor also has a greater affinity of β -arrestin, another regulatory protein, which prevents its interaction with G_s α .