The Thyroid Gland

Anatomy

- Two lateral lobes, anterior to the trachea weight, 10-20g.
- Consists of follicles, contain colloid.
- Follicles synthesize thyroglobulin.
- Thyroglobulin \rightarrow lumen, synthesis T_4/T_3 .

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Thyroid Hormone Synthesis and Secretion

Hormone Synthesis

- Active transport of I⁻ into thyroid cells (iodide trapping).
- Iodide oxidation and iodination of tyrosine in Tg.
- 3. Coupling to T_3 and T_4 .
- 4. Tg proteolysis.
- 5. Deiodination of iodotyrosines.
- 6. Intrathyroidal 5'- deiodinase $T_4 \rightarrow T_3$

4

Synthesis and secretion of T₃ and T₄

(1) Iodide trapping (2) Synthesis of thyroglobulin (TGB) (3) Oxidation of iodide Catalysed by peroxidase enzyme (4) Iodination of tyrosine 1-2 iodine ions bind to tyrosine to form MIT (T_1) or DIT (T_2) (5) Coupling of T_1 and T_2 2 x DIT molecules join to form T_4 $1 \times MIT + 1 \times DIT$ join to form T₃

Synthesis and secretion of T₃ and T₄

Synthesis and secretion of T₃ and T₄

SYNTHESIS OF THYROID HORMONES: STEP- 2 COUPLING OF IODOTYROSINES

3,5,3'5'-tetraiodothyronine

3,3',5'-Triiodothyronine (reverse T3)

3,5,3'-Triiodothyronine (T3)

Thyroxine and its precursors: Structure & Synthesis

Dietary Iodine

Food, coastal area
Thyroid traps iodide
RDA: 150 µg - adults

Thyroglobulin

- Large glycoprotein, MW 660,000.
 Dimer.
- Four tyrosyl sites for hormogenesis on Thyroglobulin (Tg).
- ► TSH \uparrow , T₃ \downarrow Tg gene.
- $\blacktriangleright mRNA \rightarrow RER \rightarrow Golgi$ (glycosylation) exocytotic vesicles.
- \blacktriangleright Release Tg into the follicular lumen. 12

Iodide Trap (lodide transport)

- Na⁺/I⁻ symporter (NIS), intrinsic membrane protein, basement membrane.
- Apical surface: pendrin carries I⁻ \rightarrow colloid
 TSH \uparrow NIS
- TSH receptor stimulated antibody (Grave's disease)
 NIS
- ▶ Perchlorate (CIO_4^-), SCN^- , $NO_3^- \downarrow NIS$

Thyroid Peroxidase

Membrane – bound glycoprotein MW 102,000 (apical cell surface) Oxidation of iodide ions by H_2O_2 . NADPH: generation of H_2O_2 . Iodination of tyr on Tg. $RER \rightarrow Golgi \rightarrow exocytotic$ vesicles to apical cell surface. TSH ↑ thyroidal peroxidase.

Thyroperoxidase

> Indination of Tyrosines in Thyroglobulin (H_2O_2) generated by NADPH > Coupling of Iodotyrosines Dimeric structure of Tg is essential. $DIT + DIT \rightarrow T_4$, $DIT + MIT \rightarrow T_3$ > Thiocarbamide drugs (Polythiouracil PTU, carbimazole) $\rightarrow \downarrow$ thyroperoxidase (treatment of hyperthyroidism).

Proteolysis of Thyroglobulin

- Lysosomal enzymes fused with colloid vesicles.
- Releasing T_4 , T_3 , DIT, MIT, peptide fragments, a.as.
- $\succ T_3/T_4 \text{ released into circulation}$ (stimulated by TSH).
- DIT/MIT deiodinated (I⁻ conserved)
 - $\succ \quad \text{Lithium} \downarrow \text{Tg proteolysis.}$

Abnormalities in Thyroid Hormone Synthesis

Inherited metabolic Defects Dyshormonogenesis (any phase) Thyroid enlargement – goiter Mild-severe hypothyroidism $\downarrow T_3/T_4, \uparrow TSH$ **Effect of Iodide deficiency** Low iodine diet: \uparrow MIT/DIT, \uparrow T₃/T₄ ratio (\uparrow 5'- deiodinase), \downarrow T₄ secretion, \uparrow TSH, goiter. Neonate: Cretinism

Abnormalities in Thyroid Hormone Synthesis...

Effect of iodine Excess

➢ Wolff – Chaikoff Effect: ↑ Iodide (diet) initially ↑organification up to a certain level then ↓ organification due to ↓ H_2O_2

Effect is transient, normal gland "escapes" from I⁻ effect

Thyroid Hormone Transport

T_3/T_4 transport in serum bound to:

- 1. Thyroxine binding globulin (TBG) 70%
- 2. Thyroxine binding prealbumin (TBPA) or transthyretin
- 3. Albumin 15%

Free Hormone "active" 0.04% T₄, 0.4% T₃

Metabolism of thyroid Hormones

$T_4 100 \text{ nmol/day}, T_3 5 \text{ nmol}, rT_3 < 5 \text{ nmol}$

5' - Deiodination

Type 1 (5' – deiodinase)

In liver, kidney, thyroid, muscle

To provide T_3 to the plasma

- \uparrow in hyperthyroidism \downarrow in hypothyroidism
- Inhibited by PTU

Dietary deficiency of Selenium inhibits $T_4 \rightarrow T_3$

Type 2 (5' – deiodinase)

Brain and pituitary, maintain intracellular T_3 to CNS Resistant to PTU, sensitive to T_4

Metabolism of thyroid Hormones ...

5' – Deiodination ... **Type 3 (5 – deiodinase)** Placenta, glial cells Inactivation of T4 and T3 $T_4 \rightarrow rT_3$ $T_3 \rightarrow 3,3' - T_2$ ↑ in hyperthyroidism (protects fetus and brain from \uparrow or \downarrow T4)

Function of Deiodinases

- Local Tissue and cellular control of thyroid activity
- Adapt to environment such as state of Ideficiency
- 80% of T_4 metabolized by deiodination: 35% to T_3 , 45% to rT_3 Half – Life

 T_4 7 days, T_3 1 day, rT_3 0.2 day.

Control of Thyroid Function

- 1. Hypothalamic pituitary thyroid axis $TRH \rightarrow \uparrow TSH \rightarrow \uparrow thyroid gland growth$ and hormone secretion
- 1. Deiodinases $T_4 \rightarrow T_3$
- 2. Iodine supply
- 3. TSH receptor autoantibodies
 - (Agonists, Antagonists)

Thyrotropin – Releasing Hormone -TRH

- TRH binds to thyrotrophs and Lactotrophs ↑ TSH and PRL
- > T_3 ↓ TRH receptor, E_2 ↑ TRH receptors and sensitivity.
- ➤ TRH: release of stored TSH, ↑ hormone synthesis.
 ➤ THR receptor: seven-transmembrane GTP

 ↑ phospholipase C IP₃ → ↑ Release
 ↑ 1,2 DAG → PKC → ↑ hormone synthesis

 ➤ TRH ↑ glycosylation of TSH (full biological activity) 24

Control of Thyroid Function: Effect of T₃

➤T₃ directly inhibits TRH gene transcription.

T₄ \downarrow TRH synthesis and release (through T₃)

TSH secretion

- Circadian rhythm, pulsatile (nocturnal surge)
- Cold (animals and newborn only): TRH, TSH (not in adults).
 - > T_3, T_4, α -adrenergic agonists, ADH $\rightarrow \uparrow$ TRH.

TSH: Effects

Accelerates Tg resorption, ↑ lysosomal formation \rightarrow Tg hydrolysis Cell growth \rightarrow thyroid enlargement ↑ All phases of I⁻ metabolism: ↑ I⁻ uptake, transport, iodination of Tg \rightarrow secretion of T₃/T₄. $cAMP \rightarrow \uparrow I$ transport $\overline{\text{IP}}_3, \text{Ca}^{++} \rightarrow \overline{\text{iodination of Tg.}}$ 27

TSH: Effects ...

↑ mRNA for Tg and thyroperoxidase.
 ↑ Type 1 5'- deiodinase.
 > Glucose uptake, O₂ consumption, glucose oxidation via HMP (NADPH) and krebs cycle (ATP).

TSH Secretion

Intrathyrotroph T₃ controls TSH mRNA, TSH release

- TRH: glycosylation, activation and release of TSH
 - Somatostatin, dopamine, (bromocriptine), Glucocorticoids: ↓ TSH

The Actions of Thyroid Hormones: **1. Thyroid Hormone Receptor**

Structure

- Within the cell $T_4 \rightarrow T_3$ by 5'- deiodinase.
- Receptor family: T₃, glucocorticoids, mineralocorticoids, estrogens, progestins, vitamin D₃, retinoic acid, retrovirus v-erb A.

The Actions of Thyroid Hormones: 1. Thyroid Hormone Receptor ...

≻ TR Gene

- **Two genes**: α and β (TR $\alpha 1$ & 2; TR $\beta 1$ & 2). TR $\alpha 2$: does not bind T₃, inhibits T₃ action.
- Thyroid receptor: three domains: N-terminal (ligand-independent).
 DNA binding: two cysteine – Zn "fingers".
 C-terminal (ligand binding).

The Actions of Thyroid Hormones: 1. Thyroid Hormone Receptor ...

DNA binding

- Thyroid hormone receptors (TR) bind to specific thyroid hormone response element (TRE) sites on DNA.
- Form heterodimers: with retinoid × receptor (R×R) or retinoic acid receptor (RAR).
- In absence of T_3 , corepressors suppress gene.

The Actions of Thyroid Hormones: **1. Thyroid Hormone Receptor ...**

T₃ binding

- Disruption of TR homodimers or heterodimers on TRE.
- Displacement of corepressors.
- Binding of coactivators.
- Activates gene transcription.

Genomic actions: tissue growth, brain maturation, *↑* heat production and O_2 consumption due to \uparrow Na⁺-K⁺ ATPase and $\uparrow \beta$ -adrenergic receptors. **Non-genomic Action**: \downarrow pituitary type 2 5'- deiodinase \uparrow glucose and amino acid transport.

- **1. Effect on Fetal Development:**
 - Thyroid in fetus begins 11 wks, T_3/T_4 secretion 18-20 wks.
 - Placental type 3 5-deiodinase \rightarrow inactivation of most T_3/T_4 .
 - ↓ fetal T₃: cretinism (mental retardation and dwarfism).

2. Effect on O₂ consumption and Heat Production

 Due to
 ↑ Na⁺ – K⁺ ATPase except in brain, spleen, testis

3. Cardiovascular Effects

- ↑ myosin heavy chain α improving cardiac output
- ↑ Ca⁺⁺ ATPase in sarcoplasmic reticulum
- $\uparrow \beta$ adrenergic receptors.

4. Sympathetic Effects

- $T_3 \uparrow \beta$ -adrenergic receptors in heart, skeletal, adipose tissue.
- Sensitivity to catecholamine \uparrow in hyperthyroidism
- β-adrenergic blockers controls tachycardia and arrhythmias.
- 5. Hematopoietic Effects
 - $T_3 \uparrow$ erythropoietin erythropoiesis.
 - \uparrow 2,3- DPG \uparrow O₂ dissociation from Hb.

6. G.I. Effects

- \succ T₃ \uparrow gut motility, diarrhea.
- \succ (Hyperthyroidism) \rightarrow weight loss
- \succ (Hypothyroidism) \rightarrow weight gain

7. Skeletal Effects

- \succ T₃ \uparrow bone turnover, \uparrow bone resorption,
- ➢ Hyperthyroidism → osteopenia, hypercalcemia, hypercalciuria.

8. Neuromuscular Effects

- Hyperthyroidism: ↑ protein turnover, myopathy, hyperflexia
- \succ T₃: CNS development + function
- ➢ Adults: hypothyroidism → sluggishness

9. Endocrine Effect

- > $T_3 \uparrow$ cortisol turnover; \uparrow Rate of cortisol production.
- Ovulation impaired in hypo- and hyperthyroidism (infertility).

10. Effects on Lipids and Carbohydrates

- T₃ ↑ hepatic gluconeogenesis, glycogenolysis, ↑G.I. Glucose absorption (exacerbate diabetes mellitus).
- \succ \uparrow lipolysis
- Hypothyroidism: ↑ chol. levels

Tests of Thyroid Function

1. Thyroid Hormones in Blood

- Total T_4/T_3 , Free T_4/T_3 , rT_3 , Tg (metastasis)
- Free T_4 (FT₄) estimated using FT₄ index (FT₄I)

FT₄ doesn't measure T₃ (early Graves' disease, T₃ toxicosis), FT₄ low, hyperthyroid state.

Tests of Thyroid Function ...

- 2. Hypothalamic Pituitary Thyroid Axis
 - Serum TSH: (TRH = not clinically feasible)
 - > FT4 α 1/log TSH
 - TSH pituitary tumors: FT4 ↑, FSH not suppressed
 - > Hypothyroidism: \uparrow TSH, \downarrow FT4.
 - ➢ Hypothyroidism (pituitary or hypothalamic tumor): FT4 ↓, TSH not elevated, no TSH response to TRH.

Tests of Thyroid Function ...

Serum TSH

Most sensitive convenient, specific test for hypothyroidism, and hyperthyroidism.

Tests of Thyroid Function ...

Cardiac muscle contractility

- Time QRS complex to opening of aortic value.
- Left ventricular ejection time (LVET).
- Prolonged in hypothyroidism, shortened in hyperthyroidism.

Thyroid Autoantibodies.

- Thyroglobulin antibody (Tg Ab)
- > Thyroperoxidase antibody (TPO Ab)
- ➤ TSH receptor antibody (TSH-R Ab [stim] or [block])

Disorders of the Thyroid

Patients usually complain of:

- 1. Thyroid enlargement (diffuse or nodular)
- 2. Thyroid deficiency (hypothyroidism)
- 3. Thyroid hormone excess (hyperthyroidism)
- Complications of a specific form of hyperthyroidism: Graves' disease (with exophthalmos) and thickening of the skin over the lower legs (thyroid dermopathy)

Hypothyroidism

- 1. primary (thyroid failure).
- 2. Secondary (due to pituitary TSH deficit).
- 3. Tertiary (due to hypothalamic TRH deficiency).
- 4. Peripheral Resistance (to the action of thyroid hormone).

Etiology

- Hashimoto's thyroiditis (autoimmune thyroiditis) with or without goiter. In older patients: gland destroyed by thyroperoxidase autoantibodies.
- 2. Radioactive iodine therapy for Graves' disease.
- 3. Iodine deficiency (developing countries).
- 4. Excessive iodide intake.
- 5. Drugs: Lithium carbonate (depression), PTU.

Pathogenesis

- Accumulation of glycosaminoglycans.
- \succ \uparrow hyaluronic acid in interstitial tissues.
- Capillary permeability to albumin.
- Interstitial edema (skin, heart muscle, striated muscle).

Clinical Presentations

- a. Newborn Infants (Cretinism)
- Goiter, mental retardation, short stature, puffy face and hands, deaf.
- Due to:
 - Failure of thyroid to descend.
 - Placental transfer of TSH-R Ab [block] from mother with Hashimoto's thyroiditis.
 - Inherited defects of T_3/T_4 biosynthesis.
- Serum $T_4 < 6 \ \mu g/dL$ or TSH > 25 $\mu U/ml =$ neonatal hypothyroidism.

49

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Clinical Presentations

b. Children

Retarded growth, mental retardation, obesity

In adolescence: precocious puberty, short stature

Hypothyroidism ... Clinical Presentations c. Adults

- Easy fatigability, coldness, weight gain, constipation, menstrual irregularities, and muscle cramps.
- Physical finings: cool, rough, dry skin; puffy face and hands; slow reflexes.
 - 1. Cardiovascular signs
 - 2. Pulmonary function
 - 3. Intestinal peristalsis
 - 4. Renal function
 - 5. Anemia: \downarrow Hb synthesis; Fe, Folate, B₁₂ deficiency
 - 6. Neuromuscular system
 - 7. CNS symptoms

Complications

- a. Myxedema Coma
 - > End stage of untreated hypothyroidism.
 - Progressive weakness, hypothermia, hypoventilation, hypoglycemia, water intoxication, shock and death.
- **b.** Neuropsychiatric disease
 - Depression, confusion, paranoid.

Diagnosis of Hypothyroidism

Figure 7–36. Diagnosis of hypothyroidism. Either free thyroxine (FT_4) or free thyroxine index (FT_4 I) may be used with TSH for evaluation.

Hyperthyroidism and Thyrotoxicosis

Thyrotoxicosis:

Clinical syndrome when tissues are exposed to high levels of thyroid hormones.

Graves' Disease Diffuse Toxic Goiter

Features

- ➤ Thyrotoxicosis.
- ≻ Goiter.
- > Ophthalmopathy (exophthalmos).
- Dermopathy (peritibial myxedema).

Graves' Disease ...

Etiology

- Autoimmune disease.
- Antibodies against TSH receptors.
- Antibodies have the capacity to stimulate. thyroid gland (growth and function).
- ➢ Antibodies: TSH−R Ab [stim].
- Genetic predisposition.

Graves' Disease ...

Exophthalmos

Cytotoxic lymphocytes (killer cells) and cytotoxic antibodies sensitized to a common antigen as TSH-R in orbital fibroblasts, orbital muscles, and thyroid tissues.

Inflammation of orbital fibroblasts, swollen orbital muscles, periorbital edema.

• Graves' Disease ...

Graves' Disease ...

Thyroid Dermopathy

- Thickening of the skin (particularly over lower tibia).
- Accumulation of glycosaminoglycans.
- **Thyroid Osteopathy**
- Bone swelling
- Separation of fingernails

Relationship between free T4 and TSH

Figure 7–28. A: Relationship between serum free thyroxine by dialysis (FT₄) ng/dL and \log_{10} TSH in euthyroid, hyperthyroid, hypothyroid, and L-T₄-suppressed euthyroid individuals. Note that for each unit change in T₄ there is a logarithmic change in TSH.